Non-native protein aggregates present a variety of problems in fundamental and applied biochemistry and biotechnology, from quality and safety issues in pharmaceutical development to their association with a number of chronic diseases. The aggregated, often amyloid, protein state is often considered to be more thermodynamically and kinetically stable than (partially) unfolded or folded monomers except under highly denaturing conditions. However, evolution of the structure and stability of aggregated states has received much less attention. Here it is shown that under mildly-denaturing conditions (elevated temperature or [urea]), where the native monomer (N) is slightly favored compared to the unfolded state (U), α-chymotrypsinogen A (aCgn) non-native aggregates undergo a structural relaxation or annealing process to reach even more stable states. The annealed aggregates are more resistant to dissociation than aggregates that do not undergo this relaxation process. Aggregates without annealing dissociate via linear chain depolymerization, and annealing is accelerated under conditions that promote slow dissociation (partially denaturing conditions). This is consistent with a free energy landscape with multiple barriers and local minima that allows for a kinetic competition between aggregate dissociation and structural relaxation to more stable aggregate states. This highlights added complexities for protein refolding or aggregate dissociation processes, and may explain why it is often difficult to completely recover monomeric protein from aggregates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145008 | PMC |
http://dx.doi.org/10.1002/bit.25129 | DOI Listing |
J Phys Chem B
January 2025
Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
In the course of 266 nm nanosecond laser flash photolysis of carbazole (CBL) in acetonitrile, we discovered a new transient absorption band centered at 360 nm that has been heretofore unreported despite numerous reports on similar topics. To put some limits on possible transients responsible for this absorption band and thus to solve the mechanism of CBL photolysis, we employed the strategy of selectively blocking the CBL active sites by various modifications in the structure. This strategy was supported by the use of the solvent effect and triplet quenching by molecular oxygen.
View Article and Find Full Text PDFLangmuir
January 2025
School of Chemical Engineering, Department of Chemistry and Materials Science, Aalto University, Tietotie 3 Espoo 02150, Finland.
Superhydrophobic surfaces find applications in numerous biomedical scenarios, requiring the repellence of biofluids and biomolecules. Plastron, the trapped air between a superhydrophobic surface and a wetting liquid, plays a pivotal role in biofluid repellency. A key challenge, however, is the often short-lived plastron stability in biofluids and the lack of knowledge surrounding it.
View Article and Find Full Text PDFIntroduction: Systemic lupus erythematosus (SLE) causes widespread inflammation and damage in affected organs. Severity is determined by the type of organ systems affected and the extent of involvement. SLE occurs in childhood or adulthood and disease severity varies according to age of onset.
View Article and Find Full Text PDFSci Adv
January 2025
School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Metal single atoms are of increasing importance in catalytic reactions. However, the mass diffusion is yet substantially limited by the confined surface of the support in comparison to homogeneous catalysis. Here, we demonstrate that cylindrical micellar brushes with highly solvated poly(2-vinylpyridine) coronas can immobilize 33 types of metal single atoms with 8.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
We present an implementation of the quantum mechanics/molecular mechanics (QM/MM) method for periodic systems using GPU accelerated QM methods, a distributed multipole formulation of the electrostatics, and a pseudobond treatment of the QM/MM boundary. We demonstrate that our method has well-controlled errors, stable self-consistent QM convergence, and energy-conserving dynamics. We further describe an application to the catalytic kinetics of chorismate mutase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!