Introduction: The magnitude of the oxygen-sparing effect induced by the diving response in humans is still under debate. We wished to compare cardiovascular changes during maximal breath-holding (BH) in air and during whole-body immersion at the surface in a group of BH divers.
Methods: Twenty-one divers performed a maximal static apnea in air or during whole-body immersion. Dopplerechocardiography, arterial blood pressure and haemoglobin saturation (SaO₂) were obtained at the beginning of, and at 1/3, 2/3 and maximal BH time.
Results: BH time was on the average 3.6 ± 0.4 min, with no differences between the two conditions. SaO₂ significantly decreased during BH in both conditions, but was significantly higher during immersion as compared to the dry (P = 0.04). In both conditions, BH induced a significant linear increase in right ventricular diameter (P < 0.001), left ventricular (LV) volumes (P < 0.001) and LV stroke volume (P < 0.001) but a significant linear decrease in LV ejection fraction (P = 0.033). In both conditions, Doppler diastolic parameters showed changes suggesting a constrictive/restrictive left ventricular filling pattern (i.e., an increase of early diastolic left ventricular filling velocity, P = 0.005, and a decrease in the deceleration time of early diastolic left ventricular filling. P < 0.001).
Conclusion: BH induces progressive LV enlargement both in air and whole-body immersion, associated with reduced LV ejection fraction and progressive hindrance to diastolic filling. For a similar apnea duration, SaO₂ decreased less during immersed BH, indicating an O₂-sparing effect of diving, suggesting that interruption of apnea was not triggered by a threshold critical value of blood O₂ desaturation.
Download full-text PDF |
Source |
---|
Int J Environ Res Public Health
December 2024
Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA.
The objective of this study is to investigate the potential mutagenic effects of the exposure of mice to aerosols produced from the component liquids of an electronic nicotine delivery system (ENDS). The use of electronic cigarettes (e-cigs) and ENDSs has increased tremendously over the past two decades. From what we know to date, ENDSs contain much lower levels of known carcinogens than tobacco smoke.
View Article and Find Full Text PDFCureus
December 2024
Department of Trauma Surgery, King Saud Medical City, Riyadh, SAU.
Respir Physiol Neurobiol
December 2024
Department of Biology, Bates College, Lewiston, ME 04240, USA.
Chronic hyperoxia during early postnatal development depresses breathing when neonatal rats are returned to room air and causes long-lasting attenuation of the hypoxic ventilatory response (HVR). In contrast, little is known about the control of breathing of juvenile or adult mammals after chronic exposure to moderate hyperoxia later in life. Therefore, Sprague-Dawley rats were exposed to 60 % O for 7 days (juveniles) or for 4 and 14 days (adults) and ventilation was measured by whole-body plethysmography immediately after the exposure or following a longer period of recovery in room air.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
December 2024
Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark.
Purpose: Clinical whole-body (WB) PET images can be compensated for respiratory motion using data-driven gating (DDG). However, PET DDG images may still exhibit motion artefacts at the diaphragm if the CT is acquired in a different respiratory phase than the PET image. This study evaluates the combined use of PET DDG and a deep-learning model (AIR-PETCT) for elastic registration of CT (WarpCT) to the non attenuation- and non scatter-corrected PET image (PET NAC), enabling improved PET reconstruction.
View Article and Find Full Text PDFPart Fibre Toxicol
December 2024
Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, BE-3590, Belgium.
The effects of ultrafine particle (UFP) inhalation on neurodevelopment, especially during critical windows of early life, remain largely unexplored. The specific time windows during which exposure to UFP might be the most detrimental remain poorly understood. Here, we studied early-life exposure to clean ultrafine carbonaceous particles (UFP) and neurodevelopment and central nervous system function in offspring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!