AI Article Synopsis

  • Understanding the adsorption mechanism of dodecanethiol ligands on 3.3 nm gold nanocrystals (Au NCs) is crucial for optimizing their properties.
  • The study uses in situ X-ray absorption techniques to reveal a two-step adsorption process, starting with a rapid increase in ligand coverage followed by a slower approach towards saturation.
  • The first stage involves quick adsorption at corner and edge sites, leading to significant changes in Au-Au bond lengths, while the second stage fits a Langmuir kinetic model, indicating preferred adsorption at specific surface sites.

Article Abstract

Understanding the kinetic mechanism during ligand adsorption on gold nanocrystals is important for designing and fine-tuning their properties and implications. Here, we report a kinetic study on the adsorption process of dodecanethiol ligands on Au nanocrystals of 3.3 nm by an in situ time-resolved X-ray absorption fine structure technique. A two-step process of dodecanethiol adsorption on Au NC surfaces is proposed based on the obtained ligand coverage, which shows a quick increase from 0 to 0.40 within the first 20 min, followed by a much slower increase to the limiting value of 0.94. In-depth analysis suggests that the first stage involves the quick adsorption of dodecanethiol to the corner and edge sites of Au NCs surfaces, leading to remarkable surface Au-Au bond length relaxation (from 2.79 to 2.81 Å) and pronounced gold-to-ligand charge transfer. The second step that corresponds to the much slower adsorption process to the surface facets could be described by the Langmuir kinetics equation with an adsorption rate constant of 0.0132 min(-1) and an initial coverage of 0.41, in good agreement with the initially preferable adsorption of thiols to the most favorable sites.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3nr04020hDOI Listing

Publication Analysis

Top Keywords

adsorption
8
gold nanocrystals
8
adsorption process
8
process dodecanethiol
8
adsorption kinetic
4
process
4
kinetic process
4
process thiol
4
thiol ligands
4
ligands gold
4

Similar Publications

Carbonate fluorapatite coatings on phillipsite represent a significant sink of phosphorus in abyssal plains of the western Pacific Ocean.

Proc Natl Acad Sci U S A

February 2025

Department of Earth System Sciences, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg 20146, Germany.

As an essential micronutrient, phosphorus plays a key role in oceanic biogeochemistry, with its cycling intimately connected to the global carbon cycle and climate change. Authigenic carbonate fluorapatite (CFA) has been suggested to represent a significant phosphorus sink in the deep ocean, but its formation mechanisms in oceanic low-productivity settings remain poorly constrained. Applying X-ray absorption near edge structure, transmission electron microscopy, and laser ablation inductively coupled plasma mass spectrometer analyses, we report a unique mineral assemblage where CFA crystals coat phillipsite in abyssal sediments of the East Mariana Basin and the Philippine Sea.

View Article and Find Full Text PDF

Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.

View Article and Find Full Text PDF

In situ-Induced Crystal Facet Engineering to Enhance the Rate Performance of Zn Storage.

ACS Appl Mater Interfaces

January 2025

School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.

In recent years, aqueous zinc-ion batteries (ZIBs) have shown considerable promise in the energy storage sector, attributed to their inherent high safety and cost-effectiveness. ZnVO(OH)·2HO (ZVO) has emerged as a promising candidate for Zn storage in recent years, owing to its exceptional structural stability that endows it with an excellent cycle life. However, an unsatisfactory rate performance is a limiting factor for its development in ZIBs.

View Article and Find Full Text PDF

Tailoring molecular diffusion in core-shell zeolite imidazolate framework composites realizes efficient kinetic separation of xylene isomers.

Angew Chem Int Ed Engl

January 2025

Zhejiang University, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, 866 Yuhangtang Road, Xihu District, hangzhou City, 310058, Hangzhou, CHINA.

The separation of xylene isomers is a critical and energy-intensive process in the petrochemical industry, primarily due to their closely similar molecular structures and boiling points. In this work, we report the synthesis and application of a novel core-shell zeolitic imidazolate framework (ZIF) composite, ZIF-65@ZIF-67, designed to significantly enhance the kinetic separation of xylene isomers through a synergistic "shell-gated diffusion and core-facilitated transport" strategy. The external ZIF-67 shell selectively restricts the diffusion of larger isomers (MX and OX), while the internal ZIF-65 core accelerates the diffusion of PX, thereby amplifying the diffusion differences among the isomers.

View Article and Find Full Text PDF

Photocatalytic reduction of nitrate to N holds great significance for environmental governance. However, the selectivity of nitrate reduction to N is influenced by sacrificial agents and the kinds of cocatalysts (such as Pt and Ag). The presence of unconsumed sacrificial agents can aggravate environmental pollution, while noble metal-based cocatalysts increase application costs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!