A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functional and fluorescence analyses of tryptophan residues in H+-pyrophosphatase of Clostridium tetani. | LitMetric

Homodimeric proton-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) maintains the cytoplasmic pH homeostasis of many bacteria and higher plants by coupling pyrophosphate (PPi) hydrolysis and proton translocation. H+-PPase accommodates several essential motifs involved in the catalytic mechanism, including the PPi binding motif and Acidic I and II motifs. In this study, 3 intrinsic tryptophan residues, Trp-75, Trp-365, and Trp-602, in H+-PPase from Clostridium tetani were used as internal probes to monitor the local conformational state of the periplasm domain, transmembrane region, and cytoplasmic domain, respectively. Upon binding of the substrate analog Mg-imidodiphosphate (Mg-IDP), local structural changes prevented the modification of tryptophan residues by N-bromosuccinimide (NBS), especially at Trp-602. Following Mg-Pi binding, Trp-75 and Trp-365, but not Trp-602, were slightly protected from structural modifications by NBS. These results reveal the conformation of H+-PPase is distinct in the presence of different ligands. Moreover, analyses of the Stern-Volmer relationship and steady-state fluorescence anisotropy also indicate that the local structure around Trp-602 is more exposed to solvent and varied under different environments. In addition, Trp-602 was identified to be a crucial residue in the H+-PPase that may potentially be involved in stabilizing the structure of the catalytic region by site-directed mutagenesis analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10863-013-9532-xDOI Listing

Publication Analysis

Top Keywords

tryptophan residues
12
clostridium tetani
8
trp-75 trp-365
8
trp-365 trp-602
8
h+-ppase
5
trp-602
5
functional fluorescence
4
fluorescence analyses
4
analyses tryptophan
4
residues h+-pyrophosphatase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!