Microworms swallow the nanobait: the use of nanocoated microbial cells for the direct delivery of nanoparticles into Caenorhabditis elegans.

Nanoscale

Biomaterials and nanomaterials group, Department of Microbiology, Kazan (Idel buye/Volga region) Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan 420008, Russian Federation.

Published: December 2013

The application of in vivo models in assessing the toxicity of nanomaterials is currently regarded as a promising way to investigate the effects of nanomaterials on living organisms. In this paper we introduce a novel method to deliver nanomaterials into Caenorhabditis elegans nematodes. Our approach is based on using nanoparticle-coated microbial cells as "nanobait", which are ingested by nematodes as a sole food source. We found that nematodes feed on the nanocoated bacteria (Escherichia coli) and microalgae (Chlorella pyrenoidosa) ingesting them via pharyngeal pumping, which results in localization of nanoparticles inside the digestive tract of the worms. Nanoparticles were detected exclusively inside the intestine, indicating the efficient delivery based on microbial cells. Delivery of iron oxide nanoparticles results in magnetic labelling of living nematodes, rendering them magnetically-responsive. The use of cell-mediated delivery of nanoparticles can be applied to investigate the toxicity of polymer-coated magnetic nanoparticles and citrate-capped silver nanoparticles in Caenorhabditis elegans in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3nr03905fDOI Listing

Publication Analysis

Top Keywords

microbial cells
12
caenorhabditis elegans
12
delivery nanoparticles
8
nanoparticles caenorhabditis
8
nanoparticles
7
microworms swallow
4
swallow nanobait
4
nanobait nanocoated
4
nanocoated microbial
4
cells direct
4

Similar Publications

Dysregulation at the intestinal epithelial barrier is a driver of inflammatory bowel disease (IBD). However, the molecular mechanisms of barrier failure are not well understood. Here, we demonstrate dysregulated mitochondrial fusion in intestinal epithelial cells (IECs) of patients with IBD and show that impaired fusion is sufficient to drive chronic intestinal inflammation.

View Article and Find Full Text PDF

Soil microbiome bacteria protect plants against filamentous fungal infections via intercellular contacts.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, Key Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.

Bacterial-fungal interaction (BFI) has significant implications for the health of host plants. While the diffusible antibiotic metabolite-mediated competition in BFI has been extensively characterized, the impact of intercellular contact remains largely elusive. Here, we demonstrate that the intercellular contact is a prevalent mode of interaction between beneficial soil bacteria and pathogenic filamentous fungi.

View Article and Find Full Text PDF

Multidrug resistant bacteria are causing health problems and economic burden worldwide; alternative treatment options such as natural products and nanoparticles have attained great attention recently. Therefore, we aimed to determine the phytochemicals, antibacterial potential, and anticancer activity of W. unigemmata.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to explore the therapeutic potential of the novel combination of Bacillus bacteriophage lysin (PlyB) and a synthetic TLR2/4 inhibitor (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, OxPAPC) in the treatment of experimental Bacillus cereus endophthalmitis.

Methods: C57BL/6J mice were injected with 100 colony forming units (CFUs) Bacillus cereus to induce endophthalmitis. Two hours postinfection, groups of mice were treated with either PlyB, PlyB with OxPAPC, or the groups were left untreated to serve as a control.

View Article and Find Full Text PDF

Antimicrobial and Cytotoxic Potential of Endophytic Aspergillus versicolor Isolate from the Medicinal Plant Plectranthus amboinicus.

Curr Microbiol

January 2025

Department of Microbiology and Botany, School of Sciences, J. C. Road, JAIN (Deemed-to-be University), Bangalore, Karnataka, 560027, India.

Endophytic fungi are non-pathogenic organisms that colonise healthy plant tissues asymptomatically. Endophytes derived from medicinal plants are sources for identifying natural products and bioactive compounds with potential uses for industry, medicine, agriculture, and related sectors. In the present study, ethyl acetate crude extracts of four endophytic fungal isolates (CALF1, CALF4, and CASF1) from the medicinal plant Plectranthus amboinicus showed potent antimicrobial activity against the test pathogenic bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis using disc diffusion assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!