Ethanol and formaldehyde fixation irreversibly alter bones' organic matrix.

J Mech Behav Biomed Mater

Institute of Anatomy, University of Leipzig, Faculty of Medicine, Liebigstraße 13, 04103 Leipzig, Germany. Electronic address:

Published: January 2014

Introduction: Biomechanical tests on bones are frequently accomplished in anatomically fixed tissues. The effects of ethanol or formaldehyde based fixation in bone material properties are subject to controversial discussions, regarding their appropriateness and usability to answer clinical questioning or biomechanical issues. We hypothesized that ethanol and formaldehyde irreversibly change bone material properties, and that this effect is mainly related to the bone's organic matrix.

Material And Methods: Fixation related alterations in material properties were investigated in six fresh and two macerated human coxal bones by means of three-dimensional laser vibrometry based modal analysis. Ethanol or formaldehyde fixation were performed in one macerated and three unfixed specimens each. Changes in specimen weight and modal frequencies related to fixation, rinsing and drying were obtained. Modal assurance criterion (MAC) values were recorded to determine altered bone anisotropy.

Results: Due to fixation, modal frequencies were irreversibly altered in unfixed specimens, indicating weight loss in ethanol and structural changes in formaldehyde fixed specimens. In the macerated and inorganic controls, fixation related weight and modal frequency changes were reversible by rinsing. In the unfixed specimens, bone anisotropy was irreversibly altered by both modes of fixation, whereas the fixation related changes in bony anisotropy were reversible in the macerated controls after rinsing.

Discussion: Anatomical fixation that includes ethanol or formaldehyde irreversibly alters material properties of unfixed bones and impacts bone anisotropic properties, caused by changes in the organic matrix. In macerated bones that exclusively consisted of inorganic mineral salts, the observed effects on material properties and anisotropy were reversible. Conclusively, anatomical fixation on basis of ethanol or formaldehyde cannot be recommended, if material characteristics close to the vital state are of interest. Modal analysis is a potential method to gain insight into material properties, revealing the influence of the organic bone matrix on coxal bone elasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2013.09.008DOI Listing

Publication Analysis

Top Keywords

ethanol formaldehyde
24
material properties
24
unfixed specimens
12
fixation
11
formaldehyde fixation
8
organic matrix
8
bone material
8
formaldehyde irreversibly
8
modal analysis
8
weight modal
8

Similar Publications

Methanol is a widely used industrial and household alcohol that poses significant health risks upon exposure. Despite its extensive use, methanol poisoning remains a critical public health concern globally, often resulting from accidental or intentional ingestion and outbreaks linked to contaminated beverages. Methanol toxicity stems from its metabolic conversion to formaldehyde and formic acid, leading to severe metabolic acidosis and multiorgan damage, including profound CNS effects and visual impairments.

View Article and Find Full Text PDF

Archived FFPE cardiac tissue specimens are valuable for molecular studies aimed at identifying biomarkers linked to mortality in cardiovascular disease. Establishing a reliable and reproducible RNA extraction method is critical for generating high-quality transcriptome sequences for molecular assays. Here, the efficiency of four RNA extraction methods: Qiagen AllPrep DNA/RNA method (Method QP); Qiagen AllPrep DNA/RNA method with protocol modification on the ethanol wash step after deparaffinization (Method QE); CELLDATA RNA extraction (Method BP) and CELLDATA RNA extraction with protocol modifications on the lysis step (Method BL) was compared on 23 matching FFPE cardiac tissue specimens (n = 92).

View Article and Find Full Text PDF

Tannic acid (TA), as a plant polyphenol, has many active sites for chelation with metals, so TA-oligomers (TA-Olig) were used for the first time as ligands on the surface of Ce-Mn-LDH to prepare the layered double hydroxide-based metal-organic framework (Ce-Mn-LDH@CPTMS@TA-Olig@Co-MOF = E) nanocomposite. In this regard, a homogeneous water/ethanol solution was prepared by sol-gel method using polyethylene glycol and ammonia solution, and then TA was converted into a set of oligomers in the presence of formaldehyde. In the next step, Ce-Mn-LDH was prepared in a ratio of 1 : 4 of Ce to Mn, modified with 3-chloropropylmethoxysilane, functionalized by TA-Olig, and then cobalt salt was used to prepare E.

View Article and Find Full Text PDF

Gas-Sensing Properties of CoS Films Toward Formaldehyde, Ethanol, and Hydrogen Sulfide.

Materials (Basel)

November 2024

Department of Advanced Materials and Chemical Engineering, Graduate School, Daegu Catholic University, Gyeongsan 38430, Gyeongbuk, Republic of Korea.

The chemiresistive gas-sensing properties of pristine CoS film are little known despite its potential as a promising gas sensor material due to its intrinsic characteristics. In this study, a pristine polycrystalline CoS film (approximately 440 nm in thickness) is fabricated by depositing a CoO film followed by sulfidation to investigate its gas-sensing properties. The prepared CoS film sensor is found to exhibit high responsiveness towards formaldehyde (HCHO), ethanol (CHOH), and hydrogen sulfide (HS) at operating temperatures of 300 °C and 400 °C, with strong concentration dependence.

View Article and Find Full Text PDF

Formalin-fixed tissues possess irreplaceable value as a source of DNA for identification, especially when fresh samples are unavailable. Nonetheless, extracting and amplifying DNA from these tissues is challenging, primarily due to formaldehyde-induced cross-linking and nucleic acid fragmentation. In this study, two pre-extraction treatments, gradual dehydration using ethanol and pre-digestion heat treatments, and three DNA extraction methods, the Chelex-100 method, TIANamp FFPE DNA Kit, and ML Ultra-micro DNA extraction kit, were utilized to optimize DNA extraction from different tissues, which were fixed in 4% unbuffered formalin for different durations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!