First-principles modeling of C60-Cr-graphene nanostructures for supporting metal clusters.

Phys Chem Chem Phys

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.

Published: November 2013

AI Article Synopsis

  • A study investigates nanomaterials composed of buckminsterfullerene (C60) and graphene (G) interconnected by chromium (Cr) coordination bonds, featuring G(C54)-Cr-C60 and G(C150)-Cr-C60 structures with favorable binding energies suggesting structural stability.
  • Spin-polarized calculations reveal that G(C54)-Cr-C60 exhibits weak ferromagnetism due to chromium's 3d electrons, while further analysis of three C60-Cr-G(C54) complexes with metal clusters (Ni4, Pd4, Pt4) shows varying binding energies and magnetic properties, with Pt-C bonds being the strongest.
  • The study also explores H2 dissociation on the Ni4 complex, finding a low reaction barrier

Article Abstract

We present a first-principles modeling study of a new class of nanomaterials in which buckminsterfullerene (C60) and graphene (G) are bridged by Cr via coordination bonds. Two nanostructures denoted as G(C54)-Cr-C60 and G(C150)-Cr-C60 are investigated, which share many similarities in the configuration geometries but differ in the distribution densities of Cr-C60 on the graphene surface. The binding energies between C60 and the rest of the system in these complexes are calculated to be 2.59 and 2.10 eV, respectively, indicative of their good structural stability. Additional spin-polarized calculations indicate that G(C54)-Cr-C60 is weakly ferromagnetic, which is chiefly due to the contribution from the 3d shell of Cr. We then investigate three model complexes of C60-Cr-G(C54) and a metal cluster (Ni4, Pd4, or Pt4). The binding energies of these three nanostructures are significantly large (3.57, 2.38, and 4.35 eV, respectively). Electron density analysis along the Ni-C, Pd-C, and Pt-C bonds consistently affirms that the Pt-C bond is the strongest while the Pd-C bond is the weakest. The strong Pt-C bond is attributed to the effective overlap of 5d(z(2)) (Pt) and 2p(z) (C) orbitals. Partial density of states analysis indicates that Ni4 and Pd4 substantially contribute to the strong ferromagnetism of the complexes, whereas Pt4 is observed to be non-magnetic even when the spin-orbit coupling is taken into account. H2 dissociation on the Ni4 complex is also examined, and the estimated reaction barrier is relatively low (0.76 eV).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp53529kDOI Listing

Publication Analysis

Top Keywords

first-principles modeling
8
binding energies
8
ni4 pd4
8
pt-c bond
8
modeling c60-cr-graphene
4
c60-cr-graphene nanostructures
4
nanostructures supporting
4
supporting metal
4
metal clusters
4
clusters first-principles
4

Similar Publications

Dissolution of CO in water followed by the subsequent hydrolysis reactions is of great importance to the global carbon cycle, and carbon capture and storage. Despite numerous previous studies, the reactions are still not fully understood at the atomistic scale. Here, we combined ab initio molecular dynamics (AIMD) simulations with Markov state models to elucidate the reaction mechanisms and kinetics of CO in supercritical water both in the bulk and nanoconfined states.

View Article and Find Full Text PDF

A semi-automated workflow relying on atomic-scale modelling is introduced to explore and understand the yet-unsolved structure of the crystalline AsTe material, recently obtained from crystallization of the parent AsTe glass, which shows promising properties for thermoelectric applications. The seemingly complex crystal structure of AsTe is investigated with density functional theory, from the stand point of As/Te disorder, in a structural template derived from elemental-Te (Te), following experimental findings from combined X-ray total scattering and diffraction. Our workflow includes a combinatorial structure generation step followed by successive structure selection and relaxation steps with progressively-increasing accuracy levels and a multi-criterion evaluation procedure.

View Article and Find Full Text PDF

The fundamental characteristics of collective interactions in topological band structures can be revealed by the exploration of charge screening in topological materials. In particular, distinct anisotropic screening behaviors are predicted to occur in Dirac nodal line semimetals (DNLSMs) due to their peculiar anisotropic low-energy dispersion. Despite the recent extensive theoretical research, experimental observations of exotic charge screening in DNLSMs remain elusive, which is partly attributed to the coexisting trivial bands near the Fermi energy.

View Article and Find Full Text PDF

Constructing a self-consistent first-principles framework that accurately predicts the properties of electron transfer reactions through finite-temperature molecular dynamics simulations is a dream of theoretical electrochemists and physical chemists. Yet, predicting even the absolute standard hydrogen electrode potential, the most fundamental reference for electrode potentials, proves to be extremely challenging. Here, we show that a hybrid functional incorporating 25% exact exchange enables quantitative predictions when statistically accurate phase-space sampling is achieved thermodynamic integrations and thermodynamic perturbation theory calculations, utilizing machine-learned force fields and Δ-machine learning models.

View Article and Find Full Text PDF

Supercarbon assembly inspired two-dimensional hourglass fermion.

J Chem Phys

January 2025

MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.

By using a tight-binding model, first-principles calculations, and ab initio molecular dynamics simulations, we theoretically demonstrate that the C76-Td-assembled two-dimensional (2D) honeycomb lattice is stable at room temperature and is resistant to mechanical deformation. We disclose that each C76-Td mimics a single carbon atom (geometrically and electronically); hence, it plays the role of one supercarbon. This inspires that the 2D material exhibits an exotic hourglass-like fermion at the Fermi level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!