In this article, we demonstrate for the first time that ultrathin graphitic carbon nitride nanosheets (g-C3N4) possess peroxidase activity. Fe doping of the nanosheets leads to peroxidase mimetics with greatly enhanced catalytic performance and the mechanism involved is proposed. We further demonstrate the novel use of such Fe-g-C3N4 as a cheap nanosensor for simple, rapid, highly selective and sensitive optical detection of glucose with a pretty low detection limit of 0.5 μM.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3nr03693fDOI Listing

Publication Analysis

Top Keywords

ultrathin graphitic
8
graphitic carbon
8
carbon nitride
8
nitride nanosheets
8
catalytic performance
8
rapid highly
8
sensitive optical
8
optical detection
8
detection glucose
8
nanosheets novel
4

Similar Publications

This work developed a novel oxidized hierarchical porous carbon (OHPC) with vesicule-like ultrathin graphitic walls via a method of air oxidation and used as an efficient adsorbent for Congo red (CR) and Malachite green (MG) removal. Results show that the OHPC2 oxidized at 400 °C possesses three-dimensional hierarchical pores with vesicule-like ultrathin graphitic walls. The prepared OHPC2 not only has a large specific surface area of 1020 m g with a high pore volume, but also has abundant oxygen-containing functional groups.

View Article and Find Full Text PDF

Different morphologies of graphitic carbon nitride (g-CN), including bulk g-CN(B-CN), ultrathin nanosheet g-CN(N-CN), and porous g-CN(P-CN) were synthesized through a facile one-step approach. They were then employed as efficient photocatalysts under visible light to degrade methylene blue and deactivate() and() bacteria. The synthesized powders were characterized using various industry standard techniques and field emission scanning electron microscopy (SEM) analysis successfully represented the various morphologies of g-CN.

View Article and Find Full Text PDF

Ultrathin Bioelectrode Array with Improved Electrochemical Performance for Electrophysiological Sensing and Modulation.

ACS Nano

December 2024

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.

To achieve high accuracy and effectiveness in sensing and modulating neural activity, efficient charge-transfer biointerfaces and a high spatiotemporal resolution are required. Ultrathin bioelectrode arrays exhibiting mechanical compliance with biological tissues offer such biointerfaces. However, their thinness often leads to a lack of mechano-electrical stability or sufficiently high electrochemical capacitance, thus deteriorating their overall performance.

View Article and Find Full Text PDF

Due to their ultra-high sensitivity, solution-gated graphene-based field-effect transistors (SG-GFET) have been proposed for applications in bio-sensing. However, challenges regarding the functionalization of GFETs have prevented their applications in clinical diagnostics so far. Here GFET sensors based on van der Waals (vdW) heterostructures of single-layer graphene layered with a molecular ≈1 nm thick carbon nanomembrane (CNM) are presented.

View Article and Find Full Text PDF

Graphitic carbon nitride (g-CN) is a fascinating material with potential applications in photocatalysis due to its good chemical stability, high thermal stability, and relative ease of synthesis. In this work, ultrathin g-CN is constructed using a hybridized method, which combines the advantages of thermal and liquid-phase stripping methods. This sample can improve performance in degrading organic pollutants several times, and the highest enhancement efficiency occurs in an alkaline environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!