Glycogen constitutes the major carbon storage source in cyanobacteria, as starch in algae and higher plants. Glycogen and starch synthesis is linked to active photosynthesis and both of them are degraded to glucose in the dark to maintain cell metabolism. Control of glycogen biosynthesis in cyanobacteria could be mediated by the regulation of the enzymes involved in this process, ADP-glucose pyrophosphorylase (AGP) and glycogen synthase, which were identified as putative thioredoxin targets. We have analyzed whether both enzymes were subjected to redox modification using purified recombinant enzymes or cell extracts in the model cyanobacterium Synechocystis sp. PCC 6803. Our results indicate that both AGP and glycogen synthases are sensitive to copper oxidation. However, only AGP exhibits a decrease in its enzymatic activity, which is recovered after reduction by DTT or reduced thioredoxin (TrxA), suggesting a redox control of AGP. In order to elucidate the role in redox control of the cysteine residues present on the AGP sequence (C45, C185, C320, and C337), they were replaced with serine. All AGP mutant proteins remained active when expressed in Synechocystis, although they showed different electrophoretic mobility profiles after copper oxidation, reflecting a complex pattern of cysteines interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/mp/sst137 | DOI Listing |
Vet Med Int
January 2024
Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Postal Code 730006299, Ibagué, Tolima, Colombia.
Global egg production is mainly based on cage systems, which have been associated with negative effects on the welfare of birds. Stress factors in restrictive production systems can lead to changes in gene transcription and protein synthesis, ultimately impacting the quality of poultry products. The liver serves various metabolic functions, such as glycogen storage, and plays a crucial role in animals' adaptation to environmental changes.
View Article and Find Full Text PDFInt J Biol Macromol
June 2023
Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China. Electronic address:
Fatigue is a common physiological response that is closely related to energy metabolism. Polysaccharides, as excellent dietary supplements, have been proven to have a variety of pharmacological activities. In this study, A 23.
View Article and Find Full Text PDFMol Metab
June 2023
Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, NA, Italy. Electronic address:
Objective: Orexin-A (OX-A) is a neuropeptide produced selectively by neurons of the lateral hypothalamus. It exerts powerful control over brain function and physiology by regulating energy homeostasis and complex behaviors linked to arousal. Under conditions of chronic or acute brain leptin signaling deficiency, such as in obesity or short-term food deprivation, respectively, OX-A neurons become hyperactive and promote hyperarousal and food seeking.
View Article and Find Full Text PDFNew Phytol
August 2020
Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, Argentina.
Root hairs (RHs) develop from specialized epidermal trichoblast cells, whereas epidermal cells that lack RHs are known as atrichoblasts. The mechanism controlling RH cell fate is only partially understood. RH cell fate is regulated by a transcription factor complex that promotes the expression of the homeodomain protein GLABRA 2 (GL2), which blocks RH development by inhibiting ROOT HAIR DEFECTIVE 6 (RHD6).
View Article and Find Full Text PDFGene Expr Patterns
November 2017
Department of Zoology, North-Eastern Hill University, Shillong, 793022, Meghalaya, India. Electronic address:
Insect growth and development are mainly regulated via synchronization of many extrinsic and intrinsic factors such as nutrition and hormones. Previously we have demonstrated that larval growth period influences the effect of insulin on the accumulation of glycogen in the fat body of Bombyx larvae. In the present study we demonstrate that Bombyx larvae at the terminal growth period (TGP, after critical weight) had a significantly greater increase in the expression level of Akt in the fat body than at the active growth period (AGP, before critical weight).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!