Back to school! Selecting a DNP program.

Nurs Manage

At Old Dominion University in Norfolk, Va., Carolyn M. Rutledge is the director of the DNP program and Michelle Renaud is co-director of the DNP program.

Published: November 2013

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.NUMA.0000436363.14645.15DOI Listing

Publication Analysis

Top Keywords

school! selecting
4
selecting dnp
4
dnp program
4
school!
1
dnp
1
program
1

Similar Publications

Protocol for quantifying muscle fiber size, number, and central nucleation of mouse skeletal muscle cross-sections using Myotally software.

STAR Protoc

January 2025

Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA. Electronic address:

Here, we present a protocol for using Myotally, a user-friendly software for fast, automated quantification of muscle fiber size, number, and central nucleation from immunofluorescent stains of mouse skeletal muscle cross-sections. We describe steps for installing the software, preparing compatible images, finding the file path, and selecting key parameters like image quality and size limits. We also detail optional features, such as measuring mean fluorescence.

View Article and Find Full Text PDF

Young Adults with Type 1 Diabetes' Clinical Outcomes and Satisfaction Related to the Use of Videoconferencing for Type 1 Diabetes Healthcare: A Narrative Review.

Diabetes Ther

January 2025

Departamento de Endocrinología y Metabolismo, Unidad de Investigación en Enfermedades Metabolicas, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico.

Introduction: Young adulthood is well documented as being a particularly challenging area of type 1 diabetes (T1D) healthcare. Many young adults with T1D (YAT1D) are distracted from effective disease self-management; T1D healthcare service engagement can be problematic and inconsistent, and high rates of unplanned healthcare contacts prevail. Video conferencing use can facilitate services to be flexible and responsive.

View Article and Find Full Text PDF

Summary: With the increased reliance on multi-omics data for bulk and single cell analyses, the availability of robust approaches to perform unsupervised learning for clustering, visualization, and feature selection is imperative. We introduce nipalsMCIA, an implementation of multiple co-inertia analysis (MCIA) for joint dimensionality reduction that solves the objective function using an extension to Non-linear Iterative Partial Least Squares (NIPALS). We applied nipalsMCIA to both bulk and single cell datasets and observed significant speed-up over other implementations for data with a large sample size and/or feature dimension.

View Article and Find Full Text PDF

Increasing evidence suggests that inhibition of receptor-interacting serine/threonine-protein kinase (RIPK) 1/RIPK3/mixed lineage kinase domain-like pseudokinase (MLKL) necrosome has protective effects in vivo models of painful conditions seen in humans associated with inflammation and demyelination in the central nervous system. However, the contribution of RIPK1-driven necroptosis to inflammatory pain remains unknown. Therefore, this study aims to determine the effect of necrostatin (Nec) -1s, a selective RIPK1 inhibitor, on lipopolysaccharide (LPS)-induced inflammatory pain and related underlying mechanisms.

View Article and Find Full Text PDF

Traditionally, multiple shape memory polymers (multiple-SMPs) are created by forming either immiscible blends with high phase continuity (cocontinuous or multilayer phase morphology) or miscible blends that exhibit compositional heterogeneity at the nanoscale. Here, a new strategy for the fabrication of multiple-SMPs is proposed. It consists of the possibility of homogeneous mixing of immiscible polymers in the solid state under high pressure and shear deformation conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!