Propofol limits microglial activation after experimental brain trauma through inhibition of nicotinamide adenine dinucleotide phosphate oxidase.

Anesthesiology

* Postdoctoral Research Fellow, † Assistant Professor, ‡ Research Associate, § Postdoctoral Research Fellow, ‖ Research Assistant, # David S. Brown Professor and Director of the Center for Shock Trauma and Anesthesiology Research (STAR), Department of Anesthesiology and Center for STAR, University of Maryland School of Medicine, Baltimore, Maryland.

Published: December 2013

Background: Microglial activation is implicated in delayed tissue damage after traumatic brain injury (TBI). Activation of microglia causes up-regulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, with the release of reactive oxygen species and cytotoxicity. Propofol appears to have antiinflammatory actions. The authors evaluated the neuroprotective effects of propofol after TBI and examined in vivo and in vitro whether such actions reflected modulation of NADPH oxidase.

Methods: Adult male rats were subjected to moderate lateral fluid percussion TBI. Effect of propofol on brain microglial activation and functional recovery was assessed up to 28 days postinjury. By using primary microglial and BV2 cell cultures, the authors examined propofol modulation of lipopolysaccharide and interferon-γ-induced microglial reactivity and neurotoxicity.

Results: Propofol improved cognitive recovery after TBI in novel object recognition test (48 ± 6% for propofol [n = 15] vs. 30 ± 4% for isoflurane [n = 14]; P = 0.005). The functional improvement with propofol was associated with limited microglial activation and decreased cortical lesion volume and neuronal loss. Propofol also attenuated lipopolysaccharide- and interferon-γ-induced microglial activation in vitro, with reduced expression of inducible nitric oxide synthase, nitric oxide, tumor necrosis factor-α, interlukin-1β, reactive oxygen species, and NADPH oxidase. Microglial-induced neurotoxicity in vitro was also markedly reduced by propofol. The protective effect of propofol was attenuated when the NADPH oxidase subunit p22 was knocked down by small interfering RNA. Moreover, propofol reduced the expression of p22 and gp91, two key components of NADPH oxidase, after TBI.

Conclusion: The neuroprotective effects of propofol after TBI appear to be mediated, in part, through the inhibition of NADPH oxidase.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ALN.0000000000000020DOI Listing

Publication Analysis

Top Keywords

microglial activation
20
nadph oxidase
20
propofol
13
nicotinamide adenine
8
adenine dinucleotide
8
dinucleotide phosphate
8
reactive oxygen
8
oxygen species
8
neuroprotective effects
8
effects propofol
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!