Visualization of neural activity in insect brains using a conserved immediate early gene, Hr38.

Curr Biol

Division of Biological Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.

Published: October 2013

AI Article Synopsis

  • Many insects show instinctive behaviors, but understanding their brain activity is challenging because observing it in moving insects is difficult.
  • Researchers discovered Hr38, an immediate early gene (IEG), as a key marker for neural activity in the male silkmoth when exposed to female odors.
  • Hr38 is also useful in the fruit fly, allowing the mapping of brain activity that overlaps with neurons related to reproduction, suggesting Hr38 could be a valuable tool for studying insect neuroethology.

Article Abstract

Many insects exhibit stereotypic instinctive behavior [1-3], but the underlying neural mechanisms are not well understood due to difficulties in detecting brain activity in freely moving animals. Immediate early genes (IEGs), such as c-fos, whose expression is transiently and rapidly upregulated upon neural activity, are powerful tools for detecting behavior-related neural activity in vertebrates [4, 5]. In insects, however, this powerful approach has not been realized because no conserved IEGs have been identified. Here, we identified Hr38 as a novel IEG that is transiently expressed in the male silkmoth Bombyx mori by female odor stimulation. Using Hr38 expression as an indicator of neural activity, we mapped comprehensive activity patterns of the silkmoth brain in response to female sex pheromones. We found that Hr38 can also be used as a neural activity marker in the fly Drosophila melanogaster. Using Hr38, we constructed a neural activity map of the fly brain that partially overlaps with fruitless (fru)-expressing neurons in response to female stimulation. These findings indicate that Hr38 is a novel and conserved insect neural activity marker gene that will be useful for a wide variety of neuroethologic studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2013.08.051DOI Listing

Publication Analysis

Top Keywords

neural activity
28
activity
9
hr38 novel
8
response female
8
neural
7
hr38
6
visualization neural
4
activity insect
4
insect brains
4
brains conserved
4

Similar Publications

A new vision of the role of the cerebellum in pain processing.

J Neural Transm (Vienna)

January 2025

Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), University of São Carlos (UFSCar), Washington Luis Road, Km 235, São Carlos, São Paulo, 13565-905, Brazil.

The cerebellum is a structure in the suprasegmental nervous system classically known for its involvement in motor functions such as motor planning, coordination, and motor learning. However, with scientific advances, other functions of the cerebellum, such as cognitive, emotional, and autonomic processing, have been discovered. Currently, there is a body of evidence demonstrating the involvement of the cerebellum in nociception and pain processing.

View Article and Find Full Text PDF

Aim: Autistic traits exhibit neurodiversity with varying behaviors across developmental stages. Brain complexity theory, illustrating the dynamics of neural activity, may elucidate the evolution of autistic traits over time. Our study explored the patterns of brain complexity in autistic individuals from childhood to adulthood.

View Article and Find Full Text PDF

: (HP) is under investigation for its potential role in postoperative complications. While some studies indicate no impact, they often cite short or incomplete follow-up. This study aims to compare 1-year outcomes in groups with and without active HP infection after bariatric surgery, also assessing HP prevalence in postoperative specimens of sleeve gastrectomy (SG) patients.

View Article and Find Full Text PDF

Abnormal locomotor patterns may occur in case of either motor damages or neurological conditions, thus potentially jeopardizing an individual's safety. Pathological gait recognition (PGR) is a research field that aims to discriminate among different walking patterns. A PGR-oriented system may benefit from the simulation of gait disorders by healthy subjects, since the acquisition of actual pathological gaits would require either a higher experimental time or a larger sample size.

View Article and Find Full Text PDF

Electroencephalogram (EEG) signals are important bioelectrical signals widely used in brain activity studies, cognitive mechanism research, and the diagnosis and treatment of neurological disorders. However, EEG signals are often influenced by various physiological artifacts, which can significantly affect data analysis and diagnosis. Recently, deep learning-based EEG denoising methods have exhibited unique advantages over traditional methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!