Early to middle gestational exposure to diethylstilbestrol impairs the development of labyrinth zone in mouse placenta.

Congenit Anom (Kyoto)

Department of Life Science, Faculty of Science and Technology, Kinki, University, Osaka, Japan.

Published: May 2014

This study was performed to clarify the involvement of impaired labyrinth zone (LZ) of the placenta in the developmental toxicity of diethylstilbestrol (DES). DES at 10 μg/kg per day was administered orally to mice on days 4 through 8 of gestation. Histological observation of the LZ and determination of blood glucose levels in dam and fetus were performed on day 13. A high frequency of embryonic death was observed in the DES group. DES induced the underdevelopment of the plexus vasculosus, extensive maternal blood space and the decreased expression of glucose transporters in the LZ, and a reduction of the glucose level in embryos. These findings suggest that impaired LZ development may be related to the embryolethality of DES.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cga.12031DOI Listing

Publication Analysis

Top Keywords

labyrinth zone
8
des
5
early middle
4
middle gestational
4
gestational exposure
4
exposure diethylstilbestrol
4
diethylstilbestrol impairs
4
impairs development
4
development labyrinth
4
zone mouse
4

Similar Publications

The placenta is the critical interface between mother and fetus, and consequently, placental dysfunction underlies many pregnancy complications. Placental formation requires an adequate expansion of trophoblast stem and progenitor cells followed by finely tuned lineage specification events. Here, using single-cell RNA sequencing of mouse trophoblast stem cells during the earliest phases of differentiation, we identify gatekeepers of the stem cell state, notably Nicol1, and uncover unsuspected trajectories of cell lineage diversification as well as regulators of lineage entry points.

View Article and Find Full Text PDF

Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca channels.

View Article and Find Full Text PDF

A modiolar-pillar gradient in auditory-nerve dendritic length: A novel post-synaptic contribution to dynamic range?

Hear Res

February 2025

Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, United States. Electronic address:

Auditory-nerve fibers (ANFs) from a given cochlear region can vary in threshold sensitivity by up to 60 dB, corresponding to a 1000-fold difference in stimulus level, although each fiber innervates a single inner hair cell (IHC) via a single synapse. ANFs with high-thresholds also have low spontaneous rates (SRs) and synapse on the side of the IHC closer to the modiolus, whereas the low-threshold, high-SR fibers synapse on the side closer to the pillar cells. Prior biophysical work has identified modiolar-pillar differences in both pre- and post-synaptic properties, but a comprehensive explanation for the wide range of sensitivities remains elusive.

View Article and Find Full Text PDF

Function of Brain-Derived Neurotrophic Factor in the Vestibular-Cochlear System.

Neurochem Res

December 2024

Department of Geriatrics, Jilin Provincial Academy of Traditional Chinese Medicine, No.6426 of Freie Road, Changchun, Jilin Province, 130021, China.

Brain-derived neurotrophic factor (BDNF) is essential for the development and functioning of the vestibular system. BDNF promotes the growth, differentiation, and synaptic plasticity of vestibular neurons, ensuring their normal operation and maintenance. According to research, BDNF is pivotal during vestibular compensation, aiding in the recovery of neuron function by remodeling the spontaneous resting potentials of damaged vestibular neurons.

View Article and Find Full Text PDF

Local OCT Structural Correlates of Deep Visual Sensitivity Defects in Early Atrophic Age-Related Macular Degeneration.

Ophthalmol Retina

December 2024

Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia. Electronic address:

Purpose: To determine local OCT structural correlates of deep visual sensitivity defects (threshold of ≤10 decibels on microperimetry) in early atrophic age-related macular degeneration (AMD).

Design: Prospective observational study.

Participants: Forty eyes from 40 participants, with at least incomplete retinal pigment epithelium (RPE) and outer retinal atrophy, or more advanced atrophic lesion(s).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!