Malassezia yeasts are responsible for the widely distributed skin disease Pityriasis versicolor (PV), which is characterized by a hyper- or hypopigmentation of affected skin areas. For Malassezia furfur, it has been shown that pigment production relies on tryptophan metabolism. A tryptophan aminotransferase was found to catalyse the initial catalytic step in pigment formation in the model organism Ustilago maydis. Here, we describe the sequence determination, recombinant production and biochemical characterization of tryptophan aminotransferase MfTam1 from M. furfur. The enzyme catalyses the transamination from l-tryptophan to keto acids such as α-ketoglutarate with Km values for both substrates in the low millimolar range. Furthermore, MfTam1 presents a temperature optimum at 40°C and a pH optimum at 8.0. MfTam1 activity is highly dependent on pyridoxal phosphate (PLP), whereas compounds interfering with PLP, such as cycloserine (CS) and aminooxyacetate, inhibit the MfTam1 reaction. CS is known to reverse hyperpigmentation in PV. Thus, the results of the present study give a deeper insight into the role of MfTam1 in PV pathogenesis and as potential target for the development of novel PV therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1111/exd.12260DOI Listing

Publication Analysis

Top Keywords

tryptophan aminotransferase
12
characterization tryptophan
8
malassezia furfur
8
mftam1
5
aminotransferase malassezia
4
furfur key
4
key enzyme
4
enzyme production
4
production indolic
4
indolic compounds
4

Similar Publications

To enhance the health and performance of poultry, novel approaches have to be created. Using appropriate nutritional interventions to enhance body physiology and thus enhance productivity is one of these approaches. The purpose of the present investigation intended to examine how growing quail physiology and growth is affected by supplementing diets with tryptophan (Trp) and/or canthaxanthin (CX).

View Article and Find Full Text PDF

Tissue accumulation and hepatotoxicity of 8:2 chlorinated polyfluoroalkyl ether sulfonate: A multi-omics analysis deciphering hepatic amino acid metabolic dysregulation in mice.

J Hazard Mater

November 2024

Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, Hebei Province, PR China. Electronic address:

8:2 Chlorinated polyfluoroalkyl ether sulfonate (8:2 Cl-PFESA) is a substitute for perfluorooctane sulfonate and an emerging environmental pollutant, yet its bioaccumulation and health risks are poorly understood. We established a subchronic exposure model in mice (0.04, 0.

View Article and Find Full Text PDF

This study aimed to evaluate the effects of the replacement of rice bran oil (RBO) with black soldier fly larvae oil (BSFLO) on growth performance, blood biochemicals, carcass quality, and metabolomics profile of breast muscle of Thai native chickens. A total of 192 1-day-old, mixed-sex, Pradu Hang Dam (Mor Kor 55) chickens were randomly allocated to one of three dietary groups. Each treatment had four replicates with 16 chicks per replicate (8 males and 8 females).

View Article and Find Full Text PDF

The high therapeutic potential of psilocybin, a prodrug of the psychotropic psilocin, holds great promise for the treatment of mental disorders such as therapy-refractory depression, alcohol use disorder and anorexia nervosa. Psilocybin has been designated a 'Breakthrough Therapy' by the US Food and Drug Administration, and therefore a sustainable production process must be established to meet future market demands. Here, we present the development of an in vivo psilocybin production chassis based on repression of l-tryptophan catabolism.

View Article and Find Full Text PDF

Gene expression of kynurenine pathway enzymes in depression and following electroconvulsive therapy.

Acta Neuropsychiatr

October 2024

Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland.

Article Synopsis
  • This study explored how the expression of kynurenine pathway (KP) enzymes in the blood is affected in patients with depression compared to healthy controls and post-electroconvulsive therapy (ECT).
  • Results showed that certain KP enzymes were lower in patients with depression, but these findings weren’t statistically significant after accounting for other factors; ECT didn't change KP enzyme expression.
  • The study suggests that further research is needed to see if KP measures can effectively help in diagnosing depression and predicting responses to antidepressant treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!