Fast ripples (FRs) are network oscillations, defined variously as having frequencies of > 150 to > 250 Hz, with a controversial mechanism. FRs appear to indicate a propensity of cortical tissue to originate seizures. Here, we demonstrate field oscillations, at up to 400 Hz, in spontaneously epileptic human cortical tissue in vitro, and present a network model that could explain FRs themselves, and their relation to 'ordinary' (slower) ripples. We performed network simulations with model pyramidal neurons, having axons electrically coupled. Ripples (< 250 Hz) were favored when conduction of action potentials, axon to axon, was reliable. Whereas ripple population activity was periodic, firing of individual axons varied in relative phase. A switch from ripples to FRs took place when an ectopic spike occurred in a cell coupled to another cell, itself multiply coupled to others. Propagation could then start in one direction only, a condition suitable for re-entry. The resulting oscillations were > 250 Hz, were sustained or interrupted, and had little jitter in the firing of individual axons. The form of model FR was similar to spontaneously occurring FRs in excised human epileptic tissue. In vitro, FRs were suppressed by a gap junction blocker. Our data suggest that a given network can produce ripples, FRs, or both, via gap junctions, and that FRs are favored by clusters of axonal gap junctions. If axonal gap junctions indeed occur in epileptic tissue, and are mediated by connexin 26 (recently shown to mediate coupling between immature neocortical pyramidal cells), then this prediction is testable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026274 | PMC |
http://dx.doi.org/10.1111/ejn.12386 | DOI Listing |
ACS Chem Neurosci
July 2024
Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
Neurology
May 2024
From the Department of Neurology and Neurosurgery (Z.W., J.G., M.v.t.K., S.H., M.Z.), University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, the Netherlands; Department of Pediatrics (J.J.), University of Calgary, Alberta Children's Hospital, Calgary, Canada; and Stichting Epilepsie Instellingen Nederland (SEIN) (M.Z.), Heemstede, the Netherlands.
Background And Objectives: High-frequency oscillations (HFOs; ripples 80-250 Hz; fast ripples [FRs] 250-500 Hz) recorded with intracranial electrodes generated excitement and debate about their potential to localize epileptogenic foci. We performed a systematic review and meta-analysis on the prognostic value of complete resection of the HFOs-area (crHFOs-area) for epilepsy surgical outcome in intracranial EEG (iEEG) accessing multiple subgroups.
Methods: We searched PubMed, Embase, and Web of Science for original research from inception to October 27, 2022.
Neuroscience
April 2024
Laboratory of Animal and Human Physiology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, 45110, Greece. Electronic address:
The aim was to investigate the long-term effects of a single episode of immature Status Epilepticus (SE) on the excitability of the septal and temporal hippocampus in vitro, by studying the relationship between interictal-like epileptiform discharges (IEDs) and high-frequency oscillations (HFOs; Ripples, Rs and Fast Ripples, FRs). A pentylenetetrazol-induced Status Epilepticus-(SE)-like generalized seizure was induced at postnatal day 20 in 22 male and female juvenile rats, sacrificed >40 days later to prepare hippocampal slices. Spontaneous IEDs induced by Mg-free ACSF were recorded from the CA3 area of temporal (T) or septal (S) slices.
View Article and Find Full Text PDFEpilepsia
April 2024
Laboratoire d'Imagerie Biomédicale, Inserm U1146/Sorbonne Université UMCR2/UMR7371 CNRS, Paris, France.
High-frequency oscillations (HFOs) are associated with normal brain function, but are also increasingly recognized as potential biomarkers of epileptogenic tissue. Considering the important role of interneuron activity in physiological HFO generation, we studied their modulation by midazolam (MDZ), an agonist of γ-aminobutyric acid type A (GABA)-benzodiazepine receptors. Here, we analyzed 80 intracranial electrode contacts in amygdala and hippocampus of 13 patients with drug-refractory focal epilepsy who had received MDZ for seizure termination during presurgical monitoring.
View Article and Find Full Text PDFBioengineering (Basel)
January 2024
INSERM, LTSI-U1099, University of Rennes, 35000 Rennes, France.
Epilepsy is a chronic neurological disorder characterized by recurrent seizures resulting from abnormal neuronal hyperexcitability. In the case of pharmacoresistant epilepsy requiring resection surgery, the identification of the Epileptogenic Zone (EZ) is critical. Fast Ripples (FRs; 200-600 Hz) are one of the promising biomarkers that can aid in EZ delineation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!