Methionine sulphoxide reductases revisited: free methionine as a primary target of H₂O₂stress in auxotrophic fission yeast.

Mol Microbiol

Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, E-08003, Barcelona, Spain.

Published: December 2013

Amino acid methionine can suffer reversible oxidation to sulphoxide and further irreversible over-oxidation to methionine sulphone. As part of the cellular antioxidant scavenging activities are the methionine sulphoxide reductases (Msrs), with a reported role in methionine sulphoxide reduction, both free and in proteins. Three families of Msrs have been described, but the fission yeast genome only includes one representative for two of these families: MsrA/Mxr1 and MsrB/Mxr2. We have investigated their role in methionine reduction and H2 O2 sensitivity. We show here that MsrA/Mxr1 is able to reduce free oxidized methionine. Cells lacking each one of the genes are not significantly sensitive to different types of oxidative stresses, neither display altered life span. However, only when deletion of msrA/mxr1 is combined with deletion of met6, which confers methionine auxotrophy, the survival upon H2 O2 stress decreases by 100-fold. In fact, cells lacking only Met6, and which therefore require addition of methionine to the growth media, are extremely sensitive to H2 O2 stress. These and other evidences suggest that oxidation of free methionine is a primary target of peroxide toxicity in cells devoid of methionine biosynthetic capacity, and that an important role of Msrs is to recycle this oxidized free amino acid.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mmi.12420DOI Listing

Publication Analysis

Top Keywords

methionine
12
methionine sulphoxide
12
sulphoxide reductases
8
free methionine
8
methionine primary
8
primary target
8
fission yeast
8
amino acid
8
role methionine
8
cells lacking
8

Similar Publications

Objectives: Many cancer cells depend on exogenous methionine for proliferation, whereas non-tumorigenic cells can divide in media supplemented with the metabolic precursor homocysteine. This phenomenon is known as methionine dependence of cancer or methionine addiction. The underlying mechanisms driving this cancer-specific metabolic addiction are poorly understood.

View Article and Find Full Text PDF

NSUN6 inhibitor discovery guided by its mRNA substrate bound crystal structure.

Structure

January 2025

Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China. Electronic address:

NSUN6 preferentially catalyzes the methylation of cytosine nucleotides in mRNA substrates, which enhances transcription. Dysregulation of NSUN6 catalysis drives the oncogenesis of certain cancers. In this study, we determined the crystal structure of human NSUN6 in complex with its S-adenosyl-L-methionine analog and a bound NECT-2 3'-UTR RNA substrate at 2.

View Article and Find Full Text PDF

A small but growing set of radical SAM (-adenosyl-l-methionine) enzymes catalyze the radical mediated dehydration or dehydrogenation of 1,2-diol substrates. In some cases, these activities can be interchanged via minor structural perturbations to the reacting components raising questions regarding the relative importance of hyperconjugation, proton circulation and leaving group stability in determining the reaction outcome. The present work describes trapping and electron paramagnetic resonance (EPR) characterization of an α-hydroxyalkyl radical intermediate during dehydration and dehydrogenation of cytosylglucuronic acid and its derivatives catalyzed by the radical SAM enzyme BlsE and its Glu189Ala mutant from the blasticidin S biosynthetic pathway.

View Article and Find Full Text PDF

Objective: This study aims to identify whether the development of insulin resistance (IR) induced by high selenium (Se) is related to serine deficiency via the inhibition of the de novo serine synthesis pathway (SSP) by the administrations of 3-phosphoglycerate dehydrogenase (PHGDH) inhibitor (NCT503) or exogenous serine in mice.

Method: forty-eight male C57BL/6J mice were randomly divided into four groups: adequate-Se (0.1 mgSe/kg), high-Se (0.

View Article and Find Full Text PDF

: We aimed to identify neonatal circulating metabolic alterations associated with maternal gestational diabetes mellitus (GDM) and to explore whether these altered metabolites could mediate the association of GDM with offspring neurodevelopment. Additionally, we investigated whether neonatal circulating metabolites could improve the prediction of offspring neurodevelopmental disorders over traditional risk factors. : The retrospective cohort study enrolled 1228 mother-child dyads in South China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!