The effects of xenon and nitrous oxide gases on alcohol relapse.

Alcohol Clin Exp Res

Faculty of Medicine Mannheim, Institute of Psychopharmacology, Central Institute of Mental Health, University of Heidelberg, Heidelberg, Germany.

Published: February 2014

Background: In recent years, the glutamate theory of alcoholism has emerged as a major theory in the addiction research field and N-methyl-d-aspartate (NMDA) receptors have been shown to play a major role in alcohol craving and relapse. The NMDA receptors are considered as the primary side of action of the anesthetic gases xenon (Xe) and nitrous oxide (N2 O). Despite the rapid on/off kinetics of these gases on the NMDA receptor, a brief gas exposure can induce an analgesic or antireward effect lasting several days. The aim of this study was to examine the effect of both Xe and N2 O on alcohol-seeking and relapse-like drinking behavior (measured as the alcohol deprivation effect) in Wistar rats.

Methods: We used 2 standard procedures-the alcohol deprivation model with repeated deprivation phases and the cue-induced reinstatement model of alcohol seeking-to study the effect of 2 brief gas exposures of either Xe, N2 O, or control gas on relapse-like drinking and alcohol-seeking behavior.

Results: Here, we show that exposure to Xe during the last 24 hours of abstinence produced a trend toward reduced ethanol intake during the first alcohol re-exposure days. In addition, Xe gas exposure significantly decreased the cue-induced reinstatement of alcohol-seeking behavior. N2 O had no effect on either behavior.

Conclusions: Xe reduces alcohol-seeking behavior in rats and may therefore also interfere with craving in human alcoholics.

Download full-text PDF

Source
http://dx.doi.org/10.1111/acer.12264DOI Listing

Publication Analysis

Top Keywords

xenon nitrous
8
nitrous oxide
8
nmda receptors
8
gas exposure
8
relapse-like drinking
8
alcohol deprivation
8
cue-induced reinstatement
8
alcohol-seeking behavior
8
alcohol
6
effects xenon
4

Similar Publications

The Role of GABA Receptors in Anesthesia and Sedation: An Updated Review.

CNS Drugs

January 2025

Department of Anesthesiology, Jefferson Surgical Center Endoscopy, Sidney Kimmel Medical College, Jefferson Health, 111 S 11th Street, #7132, Philadelphia, PA, 19107, USA.

GABA (γ-aminobutyric acid) receptors are constituents of many inhibitory synapses within the central nervous system. They are formed by 5 subunits out of 19 various subunits: α1-6, β1-3, γ1-3, δ, ε, θ, π, and ρ1-3. Two main subtypes of GABA receptors have been identified, namely GABAA and GABAB.

View Article and Find Full Text PDF

Since 2020, our lab has received blood samples from traffic cases involving suspicion of driving under the influence of nitrous oxide (NO). While NO analysis by gas chromatography (GC) has been around for decades, quantitative results in blood from drivers have been only scarcely reported. We present a three-year (2020-2022) retrospective study of NO from traffic cases in Eastern Denmark with suspected involvement of NO intake.

View Article and Find Full Text PDF

Introduction: Xenon exhibits significant neuroprotection against a wide range of neurological insults in animal models. However, clinical evidence that xenon improves outcomes in human studies of neurological injury remains elusive. Previous reviews of xenon's method of action have not been performed in a systematic manner.

View Article and Find Full Text PDF

Depression of Synaptic N-methyl-D-Aspartate Responses by Xenon and Nitrous Oxide.

J Pharmacol Exp Ther

January 2023

Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.N.); Kumamoto Health Science University, Kumamoto, Japan (K.N.), and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)

In "synapse bouton preparation" of rat hippocampal CA3 neurons, we examined how Xe and NO modulate N-methyl-D-aspartate (NMDA) receptor-mediated spontaneous and evoked excitatory post-synaptic currents (sEPSC and eEPSC). This preparation is a mechanically isolated single neuron attached with nerve endings (boutons) preserving normal physiologic function and promoting the exact evaluation of sEPSC and eEPSC responses without influence of extrasynaptic, glial, and other neuronal tonic currents. These sEPSCs and eEPSCs are elicited by spontaneous glutamate release from many homologous glutamatergic boutons and by focal paired-pulse electric stimulation of a single bouton, respectively.

View Article and Find Full Text PDF

Objective: Hypoxic-ischemic encephalopathy (HIE) in infants can have long-term adverse neurodevelopmental effects and markedly reduce quality of life. Both the initial hypoperfusion and the subsequent rapid reperfusion can cause deleterious effects in brain tissue. Cerebral blood flow (CBF) assessment in newborns with HIE can help detect abnormalities in brain perfusion to guide therapy and prognosticate patient outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!