AI Article Synopsis

  • The rise of multidrug-resistant microbes is largely due to the widespread use of antimicrobials, particularly the production of β-lactamases in Enterobacteriaceae.
  • A study characterized the prevalence of different β-lactamases using multiplex PCR, revealing that 72% of tested isolates produced these enzymes, with a notable increase from previous years.
  • The research highlights significant resistance to carbapenems while showing susceptibility to colistin and tigecycline, emphasizing the urgent need for better surveillance and molecular analysis of resistant strains in the community.

Article Abstract

The widespread use of antimicrobials has increased the occurrence of multidrug resistant microbes. The commonest mechanism of antimicrobial resistance in Enterobacteriaceae is production of β-lactamases such as metallo-β-lactamases (MBL) and extended spectrum β-lactamases (ESBL). Few studies have used a molecular approach to characterize the prevalence of β-lactamases. Here, the prevalence of different β-lactamases was characterized by performing three multiplex PCRs targeting genes similar to those described in earlier publications. Antimicrobial susceptibility tests for all isolates were performed using the agar dilution method. β-lactamase was detected in 72% of the isolates, the detection rate being 64% in 2011 and 75% in 2012. The isolates were highly resistant to carbapenems such as meropenem and imipenem and susceptible to colistin and tigecycline. In this study, 22% of isolates contained both MBL and ESBL. ESBL was detected more frequently in Escherichia coli isolates, whereas carbapenemase was detected more frequently in Klebsiella pneumoniae isolates. These findings suggest the spread of multi-resistant ESBL and MBL producers in the community. Our results have implications for patient treatment and also indicate the need for increased surveillance and molecular characterization of isolates.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1348-0421.12104DOI Listing

Publication Analysis

Top Keywords

molecular characterization
8
escherichia coli
8
klebsiella pneumoniae
8
prevalence β-lactamases
8
detected frequently
8
isolates
7
β-lactamases
5
characterization β-lactamases
4
β-lactamases escherichia
4
coli klebsiella
4

Similar Publications

Glycobiology of psoriasis: A review.

J Autoimmun

January 2025

Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, No.38, Xueyuan Road, Haidian, Beijing, 100191, China. Electronic address:

Psoriasis is a chronic inflammatory skin disease with etiologies related to genetics, immunity, and the environment. It is characterized by excessive proliferation of keratinocytes and infiltration of inflammatory immune cells. Glycosylation is a post-translational modification of proteins that plays important roles in cell adhesion, signal transduction, and immune cell activation.

View Article and Find Full Text PDF

Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.

View Article and Find Full Text PDF

Robust genetic characterization of paediatric AML has demonstrated that fusion oncogenes are highly prevalent drivers of AML leukemogenesis in young children. Identification of fusion oncogenes associated with adverse outcomes has facilitated risk stratification of patients, although successful development of precision medicine approaches for most fusion-driven AML subtypes have been historically challenging. This knowledge gap has been in part due to difficulties in targeting structural alterations involving transcription factors and in identification of a therapeutic window for selective inhibition of the oncofusion without deleterious effects upon essential wild-type proteins.

View Article and Find Full Text PDF

How I Treat Higher-Risk MDS.

Blood

January 2025

H. Lee Moffitt Cancer Center, Tampa, Florida, United States.

Myelodysplastic syndromes/neoplasms (MDS) are a widely heterogenous group of myeloid malignancies characterized by morphologic dysplasia, a defective hematopoiesis, and recurrent genetic abnormalities. The original and revised International Prognostic Scoring Systems (IPSS) have been used to risk-stratify patients with MDS to guide treatment strategies. In higher-risk MDS, the therapeutic approach is geared toward delaying leukemic transformation and prolonging survival.

View Article and Find Full Text PDF

Variations in the TP53 and KRAS genes indicate a particularly adverse prognosis in relapsed pediatric T-ALL. We hypothesized that these variations might be subclonally present at disease onset and contribute to relapse risk. To test this, we examined two cohorts of children diagnosed with T-ALL: one with 81 patients who relapsed and 79 matched non-relapsing controls, and another with 226 consecutive patients, 30 of whom relapsed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!