Although network analysis has drawn considerable attention as a promising tool for disease ecology, empirical research has been hindered by limitations in detecting the occurrence of pathogen transmission (who transmitted to whom) within social networks. Using a novel approach, we utilize the genetics of a diverse microbe, Escherichia coli, to infer where direct or indirect transmission has occurred and use these data to construct transmission networks for a wild giraffe population (Giraffe camelopardalis). Individuals were considered to be a part of the same transmission chain and were interlinked in the transmission network if they shared genetic subtypes of E. coli. By using microbial genetics to quantify who transmits to whom independently from the behavioural data on who is in contact with whom, we were able to directly investigate how the structure of contact networks influences the structure of the transmission network. To distinguish between the effects of social and environmental contact on transmission dynamics, the transmission network was compared with two separate contact networks defined from the behavioural data: a social network based on association patterns, and a spatial network based on patterns of home-range overlap among individuals. We found that links in the transmission network were more likely to occur between individuals that were strongly linked in the social network. Furthermore, individuals that had more numerous connections or that occupied 'bottleneck' positions in the social network tended to occupy similar positions in the transmission network. No similar correlations were observed between the spatial and transmission networks. This indicates that an individual's social network position is predictive of transmission network position, which has implications for identifying individuals that function as super-spreaders or transmission bottlenecks in the population. These results emphasize the importance of association patterns in understanding transmission dynamics, even for environmentally transmitted microbes like E. coli. This study is the first to use microbial genetics to construct and analyse transmission networks in a wildlife population and highlights the potential utility of an approach integrating microbial genetics with network analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1365-2656.12137DOI Listing

Publication Analysis

Top Keywords

transmission network
24
transmission
16
transmission networks
16
microbial genetics
16
social network
16
network
13
pathogen transmission
8
network analysis
8
behavioural data
8
contact networks
8

Similar Publications

Integrating social learning, social networks, and non-parental transgenerational plasticity.

Trends Ecol Evol

January 2025

Department of Environmental Science and Policy, University of California, One Shields Ave, Davis, CA 95616, USA.

Transgenerational plasticity (TGP) has largely focused on how parental exposure to ecological conditions shapes the phenotypes of future generations. However, organisms acquire information about their ecological environment via social learning, which can also shape TGP in profound ways. We demonstrate that non-parents alter how parents detect and respond to environmental cues in ways that spillover to affect offspring, non-parents influence offspring even without direct physical interactions, and parental cues received by offspring can alter the phenotypes of other juveniles.

View Article and Find Full Text PDF

The 2023 Dengue Outbreak in Lombardy, Italy: A One-Health Perspective.

Travel Med Infect Dis

January 2025

General Directorate of Welfare, Regione Lombardia, Milano, Italy.

Introduction: Here we reported the virological, entomological and epidemiological characteristics of the large autochthonous outbreak of dengue (DENV) occurred in a small village of the Lombardy region (Northern Italy) during summer 2023.

Methods: After the diagnosis of the first autochthonous case on 18 August 2023, public health measures, including epidemiological investigation and vector control measures, were carried out. A serological screening for DENV antibodies detection was offered to the population.

View Article and Find Full Text PDF

Theory of morphodynamic information processing: Linking sensing to behaviour.

Vision Res

January 2025

Centre for Brain and Behaviour, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK.

The traditional understanding of brain function has predominantly focused on chemical and electrical processes. However, new research in fruit fly (Drosophila) binocular vision reveals ultrafast photomechanical photoreceptor movements significantly enhance information processing, thereby impacting a fly's perception of its environment and behaviour. The coding advantages resulting from these mechanical processes suggest that similar physical motion-based coding strategies may affect neural communication ubiquitously.

View Article and Find Full Text PDF

Sources of HIV information and women's HIV knowledge in Southwest Sumba Indonesia: a cross-sectional study with mediation analysis.

BMC Public Health

January 2025

Public Policy, Management, and Analytics, College of Urban Planning and Public Affairs, University of Illinois at Chicago, Chicago, IL, 60607, USA.

Background: Despite multiple years of government HIV educational efforts, the growing trend of new cases among women in Indonesia runs parallel with their seemingly overall lack of comprehensive knowledge about HIV. A major prevention challenge for the Indonesian government lies in delivering HIV prevention education across the world's largest archipelago. This study investigates comprehensive HIV knowledge among reproductive-age women in Southwest Sumba, Indonesia, and the sources through which they report having learned about HIV along with potential mediators of the relationship between socioeconomic status (SES) and HIV knowledge.

View Article and Find Full Text PDF

The removal of toxic nitrophenols from the industrial wastewater is urgently needed from health, environmental and economic aspects. The present study deals with the synthesis of crosslinked vinyl polymer Poly(divinylbenzene) (poly(DVB)) through free radical polymerization technique using AIBN as initiator and acetonitrile as solvent. The prepared polymer was used as a support for silver nanoparticles via chemical reduction of silver nitrate on the polymer network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!