A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluating the extent of intramolecular charge transfer in the excited states of rhenium(I) donor-acceptor complexes with time-resolved vibrational spectroscopy. | LitMetric

AI Article Synopsis

  • Transition-metal complexes often show partial charge transfer in their excited states, even with strong donor and acceptor ligands.
  • Research on specific complexes, [Re(bpy)(CO)3L](+), examined the effects of different ligands and solvents using time-resolved infrared and electronic spectroscopy.
  • The luminescence properties vary significantly with solvent changes, and while Re3DMABN and Re4DMABN show similar solvent-dependent behavior, their excited state dynamics differ due to the distinct resonance structures of their ligands.

Article Abstract

Excited states in transition-metal complexes, even in those featuring ligands with strong electron donating and accepting properties, often involve only partial charge transfer between the donor and acceptor ligands. The excited-state properties of [Re(bpy)(CO)3L](+) compounds were studied, where L is 4-dimethylaminobenzonitrile (Re4DMABN), 3-dimethylaminobenzonitrile (Re3DMABN), and benzonitrile (ReBN) using time-resolved infrared (TRIR) and electronic spectroscopy methods as well as electronic structure computations. The DMABN complexes exhibit strongly solvent-dependent luminescence; the excited state lifetime decreases from microseconds in dichloromethane to several nanoseconds in mixed MeOH:DCM (1:1) solvent. Despite the similarities in the solvent dependence of the excited state dynamics and redox properties for Re3DMABN and Re4DMABN, the nature of the lowest energy excited states formed in these two compounds is drastically different. For example, the lowest energy excited state for Re4DMABN in the mixed solvent is assigned to the (4DMABN → bpy) ligand-to-ligand charge transfer (LLCT) state featuring partial charge transfer character. An equilibrium between a 3DMABN intraligand triplet ((3)IL) and a metal-ligand-to-ligand charge transfer (MLLCT) state is found for Re3DMABN in the mixed solvent with the latter at ca. 400 cm(-1) lower energy. The origin of such a drastic difference between the states involved in Re4DMABN and Re3DMABN is attributed to a difference in the energies of polarized quinoidal resonance structures in 4DMABN and 3DMABN ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp409628eDOI Listing

Publication Analysis

Top Keywords

charge transfer
20
excited states
12
excited state
12
partial charge
8
lowest energy
8
energy excited
8
mixed solvent
8
excited
6
charge
5
transfer
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!