We report the growth of GaN nanowires at a low temperature of 750 °C and at atmospheric pressure in a conventional chemical vapor deposition (CVD) setup via the vapor-liquid-solid mechanism with remarkable control of directionality and growth behavior by using an in situ magnetic field. Under typical growth conditions, without any magnetic field, the nanowires are severely twisted and kinked, and exhibit a high density of planar stacking defects. With increasing in situ magnetic field strength, the microstructural defects are found to decrease progressively, and quasi-aligned nanowires are produced. At an applied magnetic field strength of 0.80 T, near-vertical aligned straight and several micrometers long nanowires of average diameter of ~40 nm with defect-free microstructure are routinely produced. Photoluminescence measurements show that the relative intensity of the defect-related peaks in the visible region with respect to the near-band-edge emission continuously decrease with increase in the applied in situ magnetic field strength, ascribable to the magnetic field-assisted significant structural improvement of the wires. It is found out that the degree of agglomerative Ni droplet on Si is critically influenced by the surface tension driven by the magnetic force, which in turn determines the eventual properties of the nanowires.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am403085y | DOI Listing |
Biomater Adv
December 2024
Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China. Electronic address:
Spinal cord injury (SCI) results in electrophysiological and behavioral dysfunction. Electrical stimulation (ES) is considered to be an effective treatment for mild SCI; however, ES is not applicable to severe SCI due to the disruption of electrical conduction caused by tissue defects. Therefore, the use of conductive materials to fill the defects and restore electrical conduction in the spinal cord is a promising therapeutic strategy.
View Article and Find Full Text PDFSci Data
January 2025
Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 041 54, Košice, Slovak Republic.
The present work describes the process of the creation and analysis of the first dataset containing processing parameters and functional properties of soft magnetic composites (SMC). All data were obtained experimentally using Fe-3% MgO system. When creating samples, parameters such as a size of MgO nanoparticles, pressing pressure, sintering temperature, time and atmosphere were varied.
View Article and Find Full Text PDFJ Bone Miner Metab
January 2025
Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, China.
Nat Mater
January 2025
Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
High thermoelectric performance is generally achieved by synergistically optimizing two or even three of the contradictorily coupled thermoelectric parameters. Here we demonstrate magneto-thermoelectric correlation as a strategy to achieve simultaneous gain in an enhanced Seebeck coefficient and reduced thermal conductivity in topological materials. We report a large magneto-Seebeck effect and high magneto-thermoelectric figure of merit of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!