Multivalency of nanoparticle and associated cooperative binding with biological interface is an important aspect in the development of nanoparticle based bioimaging probes. However, the preparation of such a nanobioconjugate with a controlled number of biomolecules per nanoparticle, typically between 1 and 100, is challenging. Here we report a generalized two-step bioconjugation method to prepare nanobioconjugates with a varied average number of biomolecules between 1 to 100 per nanoparticle that can be applied to different nanoparticles and biomolecules. Following this approach we have successfully synthesized quantum dot (QD) based bioconjugates with controlled average numbers of glucose or folate and found their number-dependent interaction with proteins and cells. We propose a method for exploiting the nanoparticle multivalency effect toward various biological interactions and preparing such nanobioconjugates for best performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la402699a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!