Examination of the genetic architecture of hybrid breakdown can provide insight into the genetic mechanisms of commonly observed isolating phenomena such as Haldane's rule. We used line-cross analysis to dissect the genetic architecture of divergence between two plant species that exhibit Haldane's rule for male sterility and rarity, Silene latifolia and Silene diclinis. We made 15 types of crosses, including reciprocal F1, F2, backcrosses, and later-generation crosses, grew the seeds to flowering, and measured the number of viable ovules, proportion of viable pollen, and sex ratio. Typically, Haldane's rule for male rarity in XY animal hybrids is explained by interactions involving recessive X-linked alleles that are deleterious when hemizygous (dominance theory), whereas sterility is explained by rapid evolution of spermatogenesis genes (faster-male evolution). In contrast, we found that the genetic mechanisms underlying Haldane's rule between the two Silene species did not follow these conventions. Dominance theory was sufficient to explain male sterility, but male rarity likely involved faster-male evolution. We also found an effect of the neo-sex chromosomes of S. diclinis on the extreme rarity of some hybrid males. Our findings suggest that the genetic architecture of Haldane's rule in dioecious plants may differ from those commonly found in animals.

Download full-text PDF

Source
http://dx.doi.org/10.1111/evo.12269DOI Listing

Publication Analysis

Top Keywords

haldane's rule
24
genetic architecture
16
genetic mechanisms
8
rule male
8
male sterility
8
male rarity
8
dominance theory
8
faster-male evolution
8
genetic
6
haldane's
6

Similar Publications

Biochemical and evolutionary interactions between mitochondrial and nuclear genomes ('mitonuclear interactions') are proposed to underpin fundamental aspects of biology including evolution of sexual reproduction, adaptation and speciation. We investigated the role of pre-mating isolation in maintaining functional mitonuclear interactions in wild populations bearing diverged, putatively co-adapted mitonuclear genotypes. Two lineages of eastern yellow robin Eopsaltria australis-putatively climate-adapted to 'inland' and 'coastal' climates-differ by ~7% of mitogenome nucleotides, whereas nuclear genome differences are concentrated into a sex-linked region enriched with mitochondrial functions.

View Article and Find Full Text PDF

Hybridization and introgression are widespread in nature, with important implications for adaptation and speciation. Since heterogametic hybrids often have lower fitness than homogametic individuals, a phenomenon known as Haldane's rule, loci inherited strictly through the heterogametic sex rarely introgress. We focus on the Y-chromosomal history of guenons, African primates that hybridized extensively in the past.

View Article and Find Full Text PDF

Isolation mechanisms between mosquito species of the Anopheles gambiae complex, which includes major malaria vectors, remain poorly understood. In some cases, pre-zygotic barriers have been shown to limit gene flow between species of the complex, leading to a low level of hybridisation in nature. Post-zygotic mechanisms manifest with F hybrid males fully sterile and F hybrid females with reduced fertility.

View Article and Find Full Text PDF

Background: We focus on Haldane's familial selection in monogamous families in a diploid population, where the survival probability of each sibling is determined by altruistic food sharing with its siblings during starvation. An autosomal recessive-dominant or intermediate allele pair uniquely determines the altruistic or selfish behavior, which are coded by homozygotes. We focus on the case when additive cost and benefit functions determine the survival probability of each full sibling.

View Article and Find Full Text PDF

Background: Novel technologies are needed to combat anopheline vectors of malaria parasites as the reductions in worldwide disease incidence has stalled in recent years. Gene drive-based approaches utilizing Cas9/guide RNA (gRNA) systems are being developed to suppress anopheline populations or modify them by increasing their refractoriness to the parasites. These systems rely on the successful cleavage of a chromosomal DNA target site followed by homology-directed repair (HDR) in germline cells to bias inheritance of the drive system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!