Entanglement detection from conductance measurements in carbon nanotube cooper pair splitters.

Phys Rev Lett

Departamento de Física Teórica de la Materia Condensada, Condensed Matter Physics Center (IFIMAC), and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.

Published: September 2013

AI Article Synopsis

  • Spin-orbit interaction enables a spin filtering effect in carbon nanotube Cooper pair splitters, allowing for direct measurement of spin correlators through current.
  • Bending the nanotube alters the filtering axes, creating conditions suitable for testing the entanglement of Cooper pairs using a Bell-like inequality.
  • This method is experimentally viable, as it does not necessitate noise measurements or complete understanding of the spin-orbit interaction, while accommodating imperfect conditions.

Article Abstract

Spin-orbit interaction provides a spin filtering effect in carbon nanotube based Cooper pair splitters that allows us to determine spin correlators directly from current measurements. The spin filtering axes are tunable by a global external magnetic field. By a bending of the nanotube, the filtering axes on both sides of the Cooper pair splitter become sufficiently different that a test of entanglement of the injected Cooper pairs through a Bell-like inequality can be implemented. This implementation does not require noise measurements, supports imperfect splitting efficiency and disorder, and does not demand a full knowledge of the spin-orbit strength. Using a microscopic calculation we demonstrate that entanglement detection by violation of the Bell-like inequality is within the reach of current experimental setups.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.111.136806DOI Listing

Publication Analysis

Top Keywords

cooper pair
12
entanglement detection
8
carbon nanotube
8
pair splitters
8
spin filtering
8
filtering axes
8
bell-like inequality
8
detection conductance
4
conductance measurements
4
measurements carbon
4

Similar Publications

The Cooper-pair distribution function Dcp(ω,Tc) of Untwisted-Misaligned Bilayer Graphene (UMBLG) in the presence of an external electric field is calculated and analysed within the framework of first-principle calculations. A bilayer graphene structure is proposed using a structural geometric approximation, enabling the simulation of a structure rotated at a small angle, avoiding a supercell calculation. The Dcp(ω,Tc) function of UMBLG indicates the presence of the superconducting state for specific structural configurations, which is consistent with the superconductivity in Twisted Bilayer Graphene (TBLG) reported in the literature.

View Article and Find Full Text PDF

Intrinsic and environmental drivers of pairwise cohesion in wild Canis social groups.

Ecology

December 2024

Wildlife Research and Monitoring Section, Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada.

Animals within social groups respond to costs and benefits of sociality by adjusting the proportion of time they spend in close proximity to other individuals in the group (cohesion). Variation in cohesion between individuals, in turn, shapes important group-level processes such as subgroup formation and fission-fusion dynamics. Although critical to animal sociality, a comprehensive understanding of the factors influencing cohesion remains a gap in our knowledge of cooperative behavior in animals.

View Article and Find Full Text PDF

A search is reported for charge-parity violation in decays, using data collected in proton-proton collisions at recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 , which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on detecting multijet signatures from proton-proton collisions at a high energy of 13 TeV, analyzing a dataset totaling 128 fb^{-1}.
  • A special data scouting method is utilized to pick out events with low combined momentum in jets.
  • This research is pioneering in its investigation of electroweak particle production in R-parity violating supersymmetric models, particularly examining hadronically decaying mass-degenerate higgsinos, and it broadens the limits on the existence of R-parity violating top squarks and gluinos.
View Article and Find Full Text PDF

In this Letter we report on effects of nucleon-nucleon correlations probed in nucleon transfer reactions with heavy ions. We measured with high efficiency and resolution a complete set of observables for neutron transfer channels in the ^{206}Pb+^{118}Sn system employing a large solid angle magnetic spectrometer, which allowed us to study a wide range of internuclear distances via a detailed excitation function. The coupled channel theory, based on an independent particle transfer mechanism, follows the experimental transfer probabilities for one- and two-neutron pick-up and stripping channels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!