Object: Conventional deep brain stimulation (DBS) devices continue to rely on an open-loop system in which stimulation is independent of functional neural feedback. The authors previously proposed that as the foundation of a DBS "smart" device, a closed-loop system based on neurochemical feedback, may have the potential to improve therapeutic outcomes. Alterations in neurochemical release are thought to be linked to the clinical benefit of DBS, and fast-scan cyclic voltammetry (FSCV) has been shown to be effective for recording these evoked neurochemical changes. However, the combination of FSCV with conventional DBS devices interferes with the recording and identification of the evoked analytes. To integrate neurochemical recording with neurostimulation, the authors developed the Mayo Investigational Neuromodulation Control System (MINCS), a novel, wirelessly controlled stimulation device designed to interface with FSCV performed by their previously described Wireless Instantaneous Neurochemical Concentration Sensing System (WINCS).
Methods: To test the functionality of these integrated devices, various frequencies of electrical stimulation were applied by MINCS to the medial forebrain bundle of the anesthetized rat, and striatal dopamine release was recorded by WINCS. The parameters for FSCV in the present study consisted of a pyramidal voltage waveform applied to the carbon-fiber microelectrode every 100 msec, ramping between -0.4 V and +1.5 V with respect to an Ag/AgCl reference electrode at a scan rate of either 400 V/sec or 1000 V/sec. The carbon-fiber microelectrode was held at the baseline potential of -0.4 V between scans.
Results: By using MINCS in conjunction with WINCS coordinated through an optic fiber, the authors interleaved intervals of electrical stimulation with FSCV scans and thus obtained artifact-free wireless FSCV recordings. Electrical stimulation of the medial forebrain bundle in the anesthetized rat by MINCS elicited striatal dopamine release that was time-locked to stimulation and increased progressively with stimulation frequency.
Conclusions: Here, the authors report a series of proof-of-principle tests in the rat brain demonstrating MINCS to be a reliable and flexible stimulation device that, when used in conjunction with WINCS, performs wirelessly controlled stimulation concurrent with artifact-free neurochemical recording. These findings suggest that the integration of neurochemical recording with neurostimulation may be a useful first step toward the development of a closed-loop DBS system for human application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4001796 | PMC |
http://dx.doi.org/10.3171/2013.8.JNS122142 | DOI Listing |
The neurotransmitter acetylcholine (ACh) is essential in both the central and peripheral nervous systems. Recent studies highlight the significance of interactions between ACh and various neuromodulators in regulating complex behaviors. The ability to simultaneously image ACh and other neuromodulators can provide valuable information regarding the mechanisms underlying these behaviors.
View Article and Find Full Text PDFACS Sens
January 2025
State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China.
J ECT
December 2024
Department of Nuclear Medicine and Molecular Imaging, University Hospitals Leuven, Leuven, Belgium.
Electroconvulsive therapy (ECT) effectively treats severe psychiatric disorders such as depression, mania, catatonia, and schizophrenia. Although its exact mechanism remains unclear, ECT is thought to induce neurochemical and neuroendocrine changes. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) have provided vital insights into ECT's neurobiological effects.
View Article and Find Full Text PDFBehav Neurosci
December 2024
Department of Food Science and Nutrition, Daegu Catholic University.
Video exposure is known to affect brain function, yet its impact on neurodevelopmental processes remains unclear. This study aimed to investigate whether exposure to a video depicting social behavior induces behavioral and neurological changes in socially isolated mice. On Postnatal Day (PND) 21, male mice were separated from their dams and randomly assigned to three groups: socially grouped mice; socially isolated mice (ISO), where mice were housed without any social stimulation; and social video-exposed mice (SVE), where mice were exposed to a social video played on a tablet from PND21 to PND56 under socially isolated conditions.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland.
This study explores neurochemical changes in the brain during hypnosis, targeting the parieto-occipital (PO) and posterior superior temporal gyrus (pSTG) regions using proton magnetic resonance spectroscopy (MRS). We examined 52 healthy, hypnosis experienced participants to investigate how two different hypnotic states of varying depth impacted brain neurochemistry in comparison to each other and to their respective non-hypnagogic control conditions. Alongside neurochemical assessments, we recorded respiration and heart rate variability (HRV) to further explore possible associations between physiological correlates of hypnotic depth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!