Dynamic PET (dPET) with (18)F-Deoxyglucose (FDG) provides quantitative information about distribution of the tracer in a predefined volume over time. A two-tissue compartment model can be used to obtain quantitative data regarding transport of FDG into and out of the cells, phosphorylation and dephosphorylation rate of intracellular FDG, and fractional blood volume in the target volume, also named vessel density. Aim of the study was the correlation of glucose transporters expression and hexokinases with the corresponding compartment parameters.Patients with colorectal tumors were examined with dynamic PET prior to surgery. Afterwards, tumor samples were obtained during surgery and gene expression was assessed using gene arrays. The dynamic PET data were evaluated to quantify the parameters of a two tissue compartment model for colorectal tumors using a Volume-of-Interest (VOI) technique. A multiple correlation/regression analysis was performed using glucose transporters as independent variables and k1 as the dependent variable. A correlation of r=0.7503 (p=0.03) was obtained for the transporters SLC2A1, SLC2A2, SLC2A4, SLC2A8, SLC2A9, SLC2A10 and k1. The correlation of r=0.7503 refers to an explained variance of data of 56.30 %, therefore more than 50 % of data changes are associated with the gene expression. An analysis of the hexokinases HK1-HK3 and k3 revealed a correlation coefficient of r=0.6093 (p=0.04), which is associated with an explained variance of 37.12 %. Therefore, parameters k1 and k3 reflect gene activity. The results demonstrate that k1 and k3 of the two-tissue compartment model are correlated with glucose transporters and hexokinases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784805PMC

Publication Analysis

Top Keywords

dynamic pet
16
compartment model
16
glucose transporters
16
two-tissue compartment
12
colorectal tumors
12
18f-deoxyglucose fdg
8
fdg quantitative
8
transporters hexokinases
8
gene expression
8
correlation r=07503
8

Similar Publications

Exploiting biomimetic perception of invisible spectra in flexible artificial human vision systems (HVSs) is crucial for real-time dynamic information processing. Nevertheless, the fast processing of motion objects in natural environments poses a challenge, necessitating that these artificial HVSs simultaneously have swift photoresponse and nonvolatile memory. Here, inspired by the human retina, we propose a flexible UV neuromorphic visual synaptic device (NeuVSD) based on GaO@GaN-composited nanowires for dynamic visual perception.

View Article and Find Full Text PDF

PET Imaging of a Transgenic Tau Rat Model SHR24 with [F]AV1451.

Mol Imaging Biol

January 2025

Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.

Purpose: Positron Emission Tomography (PET) scans with radioligands targeting tau neurofibrillary tangles (NFT) have accelerated our understanding of the role of misfolded tau in neurodegeneration. While intended for human research, applying these radioligands to small animals establishes a vital translational link. Transgenic animal models of dementia, such as the tau rat SHR24, play a crucial role in enhancing our understanding of these disorders.

View Article and Find Full Text PDF

The hypertension patient population has doubled since 1990, affecting 1.3 billion globally and >75% live in low-and middle-income countries. Angiotensin Converting Enzyme Inhibitors (ACEI) and Angiotensin Receptor Blockers (ARB) are the most prescribed drugs (>160 million times in the US), but mortality increased >30% since 1990s globally.

View Article and Find Full Text PDF

Synthesis, Pharmacological Characterization, and Binding Mode Analysis of 8-Hydroxy-Tetrahydroisoquinolines as 5-HT Receptor Inverse Agonists.

ACS Chem Neurosci

January 2025

Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark.

The serotonin 7 receptor (5-HTR) regulates various processes in the central nervous system, including mood, learning, and circadian rhythm control, among others. Receptor activation can lead to activation of the Gα protein and a subsequent increase of intracellular cyclic adenosine monophosphate (cAMP). Receptor interaction with inverse agonists results in a decrease of basal cAMP levels and therefore a downstream effect of reduced neuronal excitability and neurotransmission.

View Article and Find Full Text PDF

Dynamic positron emission tomography (PET) can be used to non-invasively estimate the blood flow of different organs via compartmental modeling. Out of different PET tracers, water labeled with the radioactive O isotope of oxygen (half-life of 2.04 min) is freely diffusable, and therefore, very well-suited for blood flow quantification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!