Role of key salt bridges in thermostability of G. thermodenitrificans EstGtA2: distinctive patterns within the new bacterial lipolytic enzyme subfamily XIII.2 [corrected].

PLoS One

Département de chimie-physique, Centre de recherche sur les matériaux lignocellulosiques, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada ; PROTEO (Quebec network for research on protein structure, function and engineering), Université Laval, Québec, Québec, Canada.

Published: August 2014

Bacterial lipolytic enzymes were originally classified into eight different families defined by Arpigny and Jaeger (families I-VIII). Recently, the discovery of new lipolytic enzymes allowed for extending the original classification to fourteen families (I-XIV). We previously reported that G. thermodenitrificans EstGtA2 (access no. AEN92268) belonged to a novel group of bacterial lipolytic enzymes. Here we propose a 15(th) family (family XV) and suggest criteria for the assignation of protein sequences to the N' subfamily. Five selected salt bridges, hallmarks of the N' subfamily (E3/R54, E12/R37, E66/R140, D124/K178 and D205/R220) were disrupted in EstGtA2 using a combinatorial alanine-scanning approach. A set of 14 (R/K→A) mutants was produced, including five single, three double, three triple and three quadruple mutants. Despite a high tolerance to non-conservative mutations for folding, all the alanine substitutions were destabilizing (decreasing T m by 5 to 14°C). A particular combination of four substitutions exceeded this tolerance and prevents the correct folding of EstGtA2, leading to enzyme inactivation. Although other mutants remain active at low temperatures, the accumulation of more than two mutations had a dramatic impact on EstGtA2 activity at high temperatures suggesting an important role of these conserved salt bridge-forming residues in thermostability of lipolytic enzymes from the N' subfamily. We also identified a particular interloop salt bridge in EstGtA2 (D194/H222), located at position i -2 and i -4 residues from the catalytic Asp and His respectively which is conserved in other related bacterial lipolytic enzymes (families IV and XIII) with high tolerance to mutations and charge reversal. We investigated the role of residue identity at position 222 in controlling stability-pH dependence in EstGtA2. The introduction of a His to Arg mutation led to increase thermostability under alkaline pH. Our results suggest primary targets for optimization of EstGtA2 for specific biotechnological purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792869PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0076675PLOS

Publication Analysis

Top Keywords

lipolytic enzymes
20
bacterial lipolytic
16
salt bridges
8
estgta2
8
thermodenitrificans estgta2
8
high tolerance
8
lipolytic
6
enzymes
5
role key
4
salt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!