The processes that shaped modern European mitochondrial DNA (mtDNA) variation remain unclear. The initial peopling by Palaeolithic hunter-gatherers ~42,000 years ago and the immigration of Neolithic farmers into Europe ~8000 years ago appear to have played important roles but do not explain present-day mtDNA diversity. We generated mtDNA profiles of 364 individuals from prehistoric cultures in Central Europe to perform a chronological study, spanning the Early Neolithic to the Early Bronze Age (5500 to 1550 calibrated years before the common era). We used this transect through time to identify four marked shifts in genetic composition during the Neolithic period, revealing a key role for Late Neolithic cultures in shaping modern Central European genetic diversity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039305 | PMC |
http://dx.doi.org/10.1126/science.1241844 | DOI Listing |
Ecol Appl
January 2025
Behavioral Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém, Hungary.
As urban areas continue to expand globally, a deeper understanding of the functioning of urban green spaces is crucial for maintaining habitats that effectively support wildlife within our cities. Cities typically harbor a wide variety of nonnative vegetation, providing limited support for insect populations. The resulting scarcity of arthropods has been increasingly linked to adverse effects at higher trophic levels, such as the reduced reproductive success of insectivorous birds in urban environments.
View Article and Find Full Text PDFNature
January 2025
Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
Bipolar disorder is a leading contributor to the global burden of disease. Despite high heritability (60-80%), the majority of the underlying genetic determinants remain unknown. We analysed data from participants of European, East Asian, African American and Latino ancestries (n = 158,036 cases with bipolar disorder, 2.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
In a step towards generating switchable MRI cellular labels, we demonstrate in-situ field switching of micron scale metamagnetic Iron-Rhodium (FeRh) thin film particles. A thin-film (200 nm) FeRh sample was fabricated and patterned into an array of progressively smaller squares with sizes ranging from 500 μm down to 1 μm. The large first order phase change from antiferromagnetic to ferromagnetic state was characterized using vibrating sample magnetometry, magnetic force microscopy, and MRI.
View Article and Find Full Text PDFJAMA Psychiatry
January 2025
Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
Importance: Depressive symptoms are associated with cognitive decline in older individuals. Uncertainty about underlying mechanisms hampers diagnostic and therapeutic efforts. This large-scale study aimed to elucidate the association between depressive symptoms and amyloid pathology.
View Article and Find Full Text PDFJ Biomol NMR
January 2025
Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center (CERM), University of Florence, Florence, Italy.
Intrinsically disordered proteins and protein regions are central to many biological processes but difficult to characterize at atomic resolution. Nuclear magnetic resonance is particularly well-suited for providing structural and dynamical information on intrinsically disordered proteins, but existing NMR methodologies need to be constantly refined to provide greater sensitivity and resolution, particularly to capitalise on the potential of high magnetic fields to investigate large proteins. In this paper, we describe how N-detected 2D NMR experiments can be optimised for better performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!