Antibiotic abundance: Several new uridyl peptide antibiotics were identified from a heterologous producer strain containing the mureidomycin/napsamycin biosynthetic gene cluster by using HRMS and LC-ESI-MS/MS. Analysis of the new compounds and the corresponding gene cluster revealed NpsB, an N-acetyltransferase, to be responsible for acetylation of the uridyl peptide antibiotic.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.201300287DOI Listing

Publication Analysis

Top Keywords

uridyl peptide
8
gene cluster
8
identification mureidomycin
4
mureidomycin analogues
4
analogues functional
4
functional analysis
4
analysis n-acetyltransferase
4
n-acetyltransferase napsamycin
4
napsamycin biosynthesis
4
biosynthesis antibiotic
4

Similar Publications

The approval of COVID-19 vaccines and antiviral drugs has been crucial to end the global health crisis caused by SARS-CoV-2. However, to prepare for future outbreaks from drug-resistant variants and novel zoonotic coronaviruses (CoVs), additional therapeutics with a distinct antiviral mechanism are needed. Here, we report a novel guanidine-substituted diphenylurea compound that suppresses CoV replication by interfering with the uridine-specific endoribonuclease (EndoU) activity of the viral non-structural protein-15 (nsp15).

View Article and Find Full Text PDF

Recycling of Uridylated mRNAs in Starfish Embryos.

Biomolecules

December 2024

Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan.

In eukaryotes, mRNAs with long poly(A) tails are translationally active, but deadenylation and uridylation of these tails generally cause mRNA degradation. However, the fate of uridylated mRNAs that are not degraded quickly remains obscure. Here, using tail-seq and microinjection of the 3' region of mRNA, we report that some mRNAs in starfish are re-polyadenylated to be translationally active after deadenylation and uridylation.

View Article and Find Full Text PDF

ZFP36 Regulates Vascular Smooth Muscle Contraction and Maintains Blood Pressure.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.

Hypertension remains a major risk factor for cardiovascular diseases, but the underlying mechanisms are not well understood. Zinc finger protein 36 (ZFP36) is an RNA-binding protein that regulates mRNA stability by binding to adenylate-uridylate-rich elements in the mRNA 3'-untranslated region. This study reveals that ZFP36 expression is highly elevated in the arteries of hypertensive patients and rodents.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is the most common inherited disorder and is characterized by an inflammatory phenotype. We found that in bronchial epithelium reconstituted form lung tissue biopsies from patients with CF, the RNA-binding protein tristetraprolin (TTP), a key regulator of inflammation, is dysregulated in cells that strongly express cytokines and ILs. TTP activity is regulated by extensive posttranslational modifications, particularly phosphorylation.

View Article and Find Full Text PDF

SARS-CoV-2 NSP16 promotes IL-6 production by regulating the stabilization of HIF-1α.

Cell Signal

December 2024

State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, China; Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China. Electronic address:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of coronavirus disease 2019 (COVID-19). Severe and fatal COVID-19 cases often display cytokine storm i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!