Social play involves one of the most sophisticated types of communication, that is, the use of play signals. Most primate research on play signals has focused on the use of the play face. However, some species appear to exhibit a variety of play signals. For example, rhesus monkeys (Macaca mulatta) have been reported to use body movements or postures that might have signal value during social play, in addition to the play face. However, it is not clear whether these body signals actually meet several criteria necessary to label them as "play signals." Here we examine the forms and possible functions of seven candidate signals that we observed exclusively during social play contexts among free-ranging rhesus monkeys on Cayo Santiago. We aim to (1) distinguish them from actual play behavior (play involving contact or chasing) using loglinear analysis and (2) determine whether they predict playful behavior using modified PC-MC methods. Two candidate signals did not resemble any behaviors used in actual play. The other five signals contained elements that lasted longer or increased their conspicuousness over similar play behaviors, suggesting ritualized characteristics. Youngsters were likely to initiate contact or chasing play significantly sooner after candidate signals than in their absence. Thus, these candidate signals appear to meet critical criteria of signals that promote, moderate or facilitate play. As such, these findings open the door to questions about why multiple play signals have evolved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajp.22219 | DOI Listing |
Cell Biochem Biophys
December 2024
Biology Department, Université de Moncton, Moncton, NB, Canada.
Targeting more than one in nine men before age 70, prostate cancer is the most common type of cancer in men. The increased levels of cyclins, leading to activation of cyclin-dependent kinases (CDKs), play a critical role in the increased proliferation of prostate cancer cells. In this study, the regulation of the cyclin D1 (CCND1) promoter activity by activator protein-1 (AP-1) and SRY-related HMG-box (SOX) transcription factors has been characterized in PC3 prostate cancer cells.
View Article and Find Full Text PDFSynapse
January 2025
Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
Mammalian sterile20-like kinase 1 (MST1), a serine/threonine kinase frequently expressed, has emerged as pivotal modulator of multiple physiological and pathological conditions such as cellular growth, programmed cell death, oxidative stress, neurodegeneration, inflammation, and synaptic plasticity in the central nervous system. Various neurological diseases are associated with the activation of MST1. Epilepsy is a severe neurological disorder characterized by abrupt abnormal electrical activity in the brain and recurring spontaneous seizures.
View Article and Find Full Text PDFAntioxid Redox Signal
December 2024
Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Parkville, Australia.
Inflammation and oxidative stress play crucial roles in the development and progression of skeletal muscle diseases. This review aims to examine the existing evidence regarding the involvement and inhibition of APE1/Ref-1 (apurinic/apyrimidinic endonuclease 1/redox factor 1) in diseases, then extrapolate this evidence to the context of skeletal muscle and discuss the potential beneficial effects of APE1/Ref-1 inhibition in ameliorating myopathy with a particular focus on dystrophic pathology. Currently, therapeutic interventions targeting pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor erythroid 2-related factor 2 (NRF2), have shown limited efficacy in both clinical and preclinical settings.
View Article and Find Full Text PDFMetabolites
November 2024
Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS, University Lyon, F-69367 Lyon, France.
Phosphatases are enzymes that catalyze the hydrolysis of phosphate esters. They play critical roles in diverse biological processes such as extracellular nucleotide homeostasis, transport of molecules across membranes, intracellular signaling pathways, or vertebrate mineralization. Among them, tissue-nonspecific alkaline phosphatase (TNAP) is today increasingly studied, due to its ubiquitous expression and its ability to dephosphorylate a very broad range of substrates and participate in several different biological functions.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
College of Agronomy, Guangxi University, Nanning 530004, China.
Carbohydrate-binding modules (CBMs) are essential virulence factors in phytopathogens, particularly the extensively studied members from the CBM50 gene family, which are known as lysin motif (LysM) effectors and which play crucial roles in plant-pathogen interactions. However, the function of CBM50 in has yet to be fully studied. In this study, we identified seven CBM50 genes from the genome through complete sequence analysis and functional annotation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!