No influence of acute RF exposure (GSM-900, GSM-1800, and UMTS) on mouse retinal ganglion cell responses under constant temperature conditions.

Bioelectromagnetics

Department of Biology and Environmental Sciences, Neurobiology, University of Oldenburg, Oldenburg, Germany.

Published: January 2014

Possible non-thermal effects of radio frequency electromagnetic fields (RF-EMF) on retinal ganglion cells were studied in vitro under conditions of constant temperature. Isolated mouse retinae were exposed to GSM-900, GSM-1800, and universal mobile telecommunication system (UMTS) RF-EMF applying specific absorption rates (SAR) of 0 (sham), 0.02, 0.2, 2, and 20 W/kg. Temperature was kept constant within ±0.5 to 1 °C for GSM-900 and ±0.5 °C for GSM-1800 and UMTS. Responses of retinal ganglion cells to light stimuli of three intensities (0.5, 16, and 445 lx) were recorded before, during, and up to 35 min after exposure. Experiments were performed under double-blind conditions. Changes in light responses during and after exposure were determined for each condition (RF-EMF; SAR value; light intensity) with respect to the responses before exposure, respectively. Changes were calculated using the Euclidian distance of the n-dimensional response vectors, respectively. Some changes already occurred during sham (0 W/kg) exposure, reflecting the intrinsic variability in retinal ganglion cell responses. Comparison of the distance values from sham exposure with those from actual exposure yielded no significant differences. In addition, linear regression analysis of the distance values versus SAR values yielded no consistent dependence of light response changes. From these results we conclude that RF-EMF exposure at three mobile phone frequencies (GSM-900, GSM-1800, UMTS) and SARs up to 20 W/kg has no acute effects on retinal ganglion cell responses under constant temperature conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bem.21811DOI Listing

Publication Analysis

Top Keywords

retinal ganglion
20
gsm-900 gsm-1800
12
gsm-1800 umts
12
ganglion cell
12
cell responses
12
constant temperature
12
exposure
8
responses constant
8
temperature conditions
8
ganglion cells
8

Similar Publications

Purpose: In this study, it was planned to compare the macular ganglion cell analysis (GCA) and peripapillary retinal nerve fiber layer (pRNFL) of the patients with preperimetric glaucoma (PPG), early stage glaucoma (EG) and the control group.

Methods: This retrospective study included a total of 103 eyes: 38 from EG patients, 30 from PPG patients, and 35 from healthy individuals at Ankara Bilkent City Hospital Glaucoma Unit between January 2018 and September 2021. Eyes were categorized into control, PPG, and EG groups based on visual field (VF) classification.

View Article and Find Full Text PDF

Effects of light on biological functions and human sleep.

Handb Clin Neurol

January 2025

Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland.

The nonvisual effects of light in humans are mainly conveyed by a subset of retinal ganglion cells that contain the pigment melanopsin which renders them intrinsically photosensitive (= intrinsically photosensitive retinal ganglion cells, ipRGCs). They have direct connections to the main circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and modulate a variety of physiological processes, pineal melatonin secretion, autonomic functions, cognitive processes such as attention, and behavior, including sleep and wakefulness. This is because efferent projections from the SCN reach other hypothalamic nuclei, the pineal gland, thalamus, basal forebrain, and the brainstem.

View Article and Find Full Text PDF

Neuroprotective Effect of Melatonin Loaded in Human Serum Albumin Nanoparticles Applied Subconjunctivally in a Retinal Degeneration Animal Model.

Pharmaceutics

January 2025

Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.

Background/objectives: Neurodegenerative ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, represent growing public health concerns. Oxidative stress plays a key role in their development, damaging retinal cells and accelerating disease progression. Melatonin (Mel) is a potent antioxidant with neuroprotective properties; however, it faces limitations such as low solubility.

View Article and Find Full Text PDF

Retinal Protection of New Nutraceutical Formulation.

Pharmaceutics

January 2025

Innovation and Medical Science, SIFI S.p.A., 95025 Aci Sant'Antonio, Italy.

Retinal ganglion cell (RGC) protection represents an unmet need in glaucoma. This study assessed the neuroprotective, antioxidant, and anti-inflammatory effect of a new nutraceutical formulation named Epicolin, based on citicoline, homotaurine, epigallocatechin-3-gallate, forskolin, and vitamins, through in vitro and in vivo studies. The neuroprotective effect of Epicolin or its single components, and Epicolin compared to an untreated control and two marketed formulations [Formulation G (FG) and N (FN)], was evaluated in neuroblastoma cells (SH-SY5Y) challenged with staurosporine.

View Article and Find Full Text PDF

Feasibility of Ex Vivo Ligandomics.

Biomolecules

January 2025

Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA.

We developed ligandomics for the in vivo profiling of vascular ligands in mice, discovering secretogranin III (Scg3) as a novel angiogenic factor that selectively binds to retinal vessels of diabetic but not healthy mice. This discovery led to the development of anti-Scg3 therapy for ocular vasculopathies. However, in vivo ligandomics requires intracardial perfusion to remove unbound phage clones, limiting its use to vascular endothelial cells (ECs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!