Recent hypotheses suggest that immunosuppression, resulting from altered environmental conditions, may contribute to the increased incidence of amphibian disease around the world. Antimicrobial peptides (AMPs) in amphibian skin are an important innate immune defense against fungal, viral and bacterial pathogens. Their release is tightly coupled with release of the stress hormone noradrenaline (norepinephrine). During metamorphosis, AMPs may constitute the primary immune response in the skin of some species because acquired immune functions are temporarily suppressed in order to prevent autoimmunity against new adult antigens. Suppression of AMPs during this transitional stage may impact disease rates. We exposed leopard frog tadpoles (Lithobates pipiens) to a factorial combination of competitor and caged-predator environments and measured their development, growth and production of hydrophobic skin peptides after metamorphosis. In the absence of predator cues, or if the exposure to predator cues was late in ontogeny, competition caused more than a 250% increase in mass-standardized hydrophobic skin peptides. Predator cues caused a decrease in mass-standardized hydrophobic skin peptides when the exposure was late in ontogeny under low competition, but otherwise had no effect. Liquid chromatography tandem mass spectrometry of the skin peptides showed that they include six AMPs in the brevinin and temporin families and at least three of these peptides are previously uncharacterized. Both of these peptide families have previously been shown to inhibit harmful microbes including Batrachochytrium dendrobatidis, the fungal pathogen associated with global amphibian declines. Our study shows that amphibians may be able to adjust their skin peptide defenses in response to stressors that are experienced early in ontogeny and that these effects extend through an important life-history transition.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.091611DOI Listing

Publication Analysis

Top Keywords

predator cues
16
skin peptides
16
hydrophobic skin
12
late ontogeny
8
mass-standardized hydrophobic
8
skin
7
peptides
6
interactive effects
4
effects competition
4
predator
4

Similar Publications

Typhlodromus (Anthoseius) recki feeds on pest mites on tomato plants and its introduction into crops via companion plants, Mentha suaveolens and Phlomis fruticosa, has been recently investigated. This study aims at assessing the predator arrestment behavior, through lab choice tests to determine the effects of (i) prey (Aculops lycopersici and Tetranychus urticae) vs Typha angustifolia pollen deposited on companion plant or Solanum nigrum, (ii) T. urticae vs A.

View Article and Find Full Text PDF

(Fabricius, 1794) (Lepidoptera: Pyralidae) is a pyralid moth with two ears in its abdomen that it uses for detecting mates and predators. Despite no connection between the two ears having been found and no other elements having been observed through X-ray scans of the moth, it seems to be capable of directional hearing with just one ear when one of them is damaged. It is therefore suspected that the morphology of the eardrum can provide directional cues for sound localization.

View Article and Find Full Text PDF

Humans may play a key role in providing small prey mammals spatial and temporal refuge from predators, but few studies have captured the heterogeneity of these effects across space and time. Global COVID-19 lockdown restrictions offered a unique opportunity to investigate how a sudden change in human presence in a semi-urban park impacted wildlife. Here, we quantify how changes in the spatial distributions of humans and natural predators influenced the landscape of fear for the California ground squirrel (Otospermophilus beecheyi) in a COVID-19 pandemic (2020) and non-COVID (2019) year.

View Article and Find Full Text PDF

Parental experiences can alter offspring phenotypes via transgenerational plasticity (TGP), which may prime offspring to adaptively respond to novel stressors, including novel predators. However, we know little about the types of sensory cues (e.g.

View Article and Find Full Text PDF

In cannibalistic species, conspecifics can be both predators and prey. As a result, conspecifics present a unique conflict at the intersection of predation, competition and nutritional resources in these species. To better understand how individuals respond to the complex information of conspecific chemical cues, we studied aggressive and cannibalistic tadpoles of the dyeing poison frog, .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!