With the aid of experimental design, we developed and characterized nanoemulsions for parenteral drug delivery. Formulations containing a mixture of medium-chain triglycerides and soybean oil as oil phase, lecithin (soybean/egg) and polysorbate 80 as emulsifiers, and 0.1 M phosphate buffer solution (pH 8) as aqueous phase were prepared by cold high-pressure homogenization. To study the effects of the oil content, lecithin type, and the presence of diazepam as a model drug and their interactions on physicochemical characteristics of nanoemulsions, a three factor two-level full factorial design was applied. The nanoemulsions were evaluated concerning droplet size and size distribution, surface charge, viscosity, morphology, drug-excipient interactions, and physical stability. The characterization revealed the small spherical droplets in the range 195 -220 nm with polydispersity index below 0.15 and zeta potential between -30 and - 60 mV. Interactions among the investigated factors, rather than factors alone, were shown to more profoundly affect nanoemulsion characteristics. In vivo pharmacokinetic study of selected diazepam nanoemulsions with different oil content (20%, 30%, and 40%, w/w) demonstrated fast and intense initial distribution into rat brain of diazepam from nanoemulsions with 20% and 30% (w/w) oil content, suggesting their applicability in urgent situations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.23734 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!