Estradiol regulates GH-releasing peptide's interactions with GH-releasing hormone and somatostatin in postmenopausal women.

Eur J Endocrinol

Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota 55905, USA.

Published: January 2014

Objective: Estrogen stimulates pulsatile secretion of GH, via mechanisms that are largely unknown. An untested hypothesis is that estradiol (E₂) drives GH secretion by amplifying interactions among GH-releasing hormone (GHRH), somatostatin (SS), and GH-releasing peptide (GHRP).

Design: The design comprised double-blind randomized prospective administration of transdermal E₂ vs placebo to healthy postmenopausal women (n=24) followed by pulsatile GHRH or SS infusions for 13 h overnight with or without continuous GHRP2 stimulation.

Methods: End points were mean concentrations, deconvolved secretion, and approximate entropy (ApEn; a regularity measure) of GH.

Results: By generalized ANOVA models, it was observed that E₂ vs placebo supplementation: i) augmented mean (13-h) GH concentrations (P=0.023), GHRH-induced pulsatile GH secretion over the first 3 h (P=0.0085) and pulsatile GH secretion over the next 10 h (P=0.054); ii) increased GHRP-modulated (P=0.022) and SS-modulated (P<0.001) GH ApEn; and iii) did not amplify GHRH/GHRP synergy during pulsatile GH secretion. By linear regression, E₂ concentrations were found to be positively correlated with GH secretion during GHRP2 infusion (P=0.022), whereas BMI was found to be negatively correlated with GH secretion during GHRH (P=0.006) and combined GHRH/GHRP (P=0.015) stimulation. E₂ and BMI jointly determined triple (combined l-arginine, GHRH, and GHRP2) stimulation of GH secretion after saline (R²=0.44 and P=0.003) and pulsatile GHRH (R²=0.39 and P=0.013) infusions.

Conclusion: In summary, in postmenopausal women, E₂ supplementation augments the amount (mass) and alters the pattern (regularity) of GH secretion via interactions among GHRH, SS, GHRP, and BMI. These outcomes introduce a more complex model of E₂ supplementation in coordinating GH secretion in aging women.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3892701PMC
http://dx.doi.org/10.1530/EJE-13-0733DOI Listing

Publication Analysis

Top Keywords

pulsatile secretion
12
interactions gh-releasing
8
gh-releasing hormone
8
postmenopausal women
8
e₂ placebo
8
secretion
5
estradiol regulates
4
gh-releasing
4
regulates gh-releasing
4
gh-releasing peptide's
4

Similar Publications

Multi-dimensional oscillatory activity of mouse GnRH neurons in vivo.

Elife

January 2025

Department of Physiology, Development and Neuroscience, Downing site, University of Cambridge, Cambridge, United Kingdom.

The gonadotropin-releasing hormone (GnRH) neurons represent the key output cells of the neural network controlling mammalian fertility. We used GCaMP fiber photometry to record the population activity of the GnRH neuron distal projections in the ventral arcuate nucleus where they merge before entering the median eminence to release GnRH into the portal vasculature. Recordings in freely behaving intact male and female mice revealed abrupt ~8 min duration increases in activity that correlated perfectly with the appearance of a subsequent pulse of luteinizing hormone (LH).

View Article and Find Full Text PDF

GnRH pulse generator activity in mouse models of polycystic ovary syndrome.

Elife

January 2025

Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.

Article Synopsis
  • One in ten women of reproductive age have PCOS, characterized by subfertility, high LH levels, and potential dysfunction in the kisspeptin neurons that regulate GnRH.
  • Researchers studied the GnRH pulse generator in two mouse models of PCOS: the peripubertal androgen (PPA) model showed fewer synchronized neuron events, while the prenatal androgen (PNA) model revealed variable GnRH activity but cyclical patterns indicating complexity.
  • Findings indicate that in the PNA model, ARN neurons had increased activity during specific stages and less sensitivity to progesterone, highlighting the need to understand GnRH regulation in PCOS-related conditions.
View Article and Find Full Text PDF

The objective of this study was to examine the efficacy of the concurrent utilization of estradiol valerate and kuntai capsule (a Chinese herbal preparation) in addressing premature ovarian failure (POF) and its ramifications for ovarian hemodynamics and sex hormone levels. A retrospective study of 104 patients with POF was conducted, dividing them into control (n=50) and observation groups (n=54). The control group received estradiol valerate, while the observation group received estradiol valerate and KunTai capsules over 12 weeks.

View Article and Find Full Text PDF

Re-scoping ultradian rhythms in the context of metabolism.

Front Physiol

December 2024

Energy and Sustainability Research Institute Groningen, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.

Rapid, ultradian biological rhythms are only partly comparable to circadian (24-h) rhythms. Often, the ensuing expectations from this comparison are that 1) ultradian rhythms should be driven by discrete oscillators, 2) they are biochemically buffered, and 3) they must be functionally linked to extrinsic events and cycles. These three expectations are not always met, but perhaps there is an adaptive benefit to ultradian rhythms not meeting these expectations, which sets them functionally apart from circadian rhythms.

View Article and Find Full Text PDF

Background: Senility influences fertility in women and companion animals, especially horses.

Aim: This study aimed to investigate the effect of aging in horses on the daily changes in the dominant follicle (DF) dynamics and hemodynamics, antimüllerian hormone (AMH), enzymes, antioxidants, and ovarian hormones during the estrous cycle.

Methods: Ovaries of old mares ( = 5, age >20 years) and young native mares ( = 6, age <10 years) were scanned during 6 different estrous cycles from March 2022 to August 2023 with Doppler ultrasound.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!