Fish oil rich in eicosapentaenoic acid protects against oxidative stress-related renal dysfunction induced by TCDD in Wistar rats.

Cell Stress Chaperones

Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.

Published: May 2014

Humans are systemically exposed to persistent organic pollutants, of which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has become a major environmental concern. Exposure to TCDD results in a wide variety of adverse health effects which is mediated by oxidative stress through CYP1A1 activation and arachidonic acid metabolites. Eicosapentaenoic acid (EPA) exhibits antioxidant property and competes with arachidonic acid in membrane phospholipids and produces anti-inflammatory EPA derivatives. Since both EPA and its derivatives have been reported to enhance the antioxidant mechanism, the present study aimed at studying whether EPA could offer protection against TCDD-induced oxidative stress and nephrotoxicity in Wistar rats. Estimation of kidney markers (serum urea and creatinine) and histopathological studies revealed that EPA treatment significantly reduced TCDD-induced renal damage. TCDD-induced oxidative damage was reflected in a significant increase in CYP1A1 activity and lipid peroxide levels with a concomitant decline in non-enzymic antioxidant (GSH) and various enzymic antioxidants such catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), and glutathione peroxidase (GPx). In addition, TCDD-induced oxidative stress also resulted in decline in Na(+)-K(+) and Mg(2+)ATPases activities with increase in Ca(2+) ATPases activity. Oral treatment with EPA showed a significant cytoprotection against TCDD-induced renal oxidative stress by decreased CYP1A1 activity and enhanced antioxidant status. TCDD-induced alterations in ATPase enzyme activities were also prevented by EPA treatment. Our results show clear evidence that EPA ameliorates TCDD-induced oxidative stress and kidney damage; thus suggest the potential of EPA as an effective therapeutic agent against toxic effects mediated through redox imbalance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982028PMC
http://dx.doi.org/10.1007/s12192-013-0470-7DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
tcdd-induced oxidative
16
epa
9
eicosapentaenoic acid
8
wistar rats
8
effects mediated
8
arachidonic acid
8
epa derivatives
8
epa treatment
8
tcdd-induced renal
8

Similar Publications

Background: The Microtubules-associated protein tau (MAPT), alpha-synuclein (SNCA), and leucine zipper tumor suppressor 3 (LZTS3) genes are implicated in neurodegeneration and tumor suppression, respectively. This study investigated the regulatory roles of eugenol on paraquat-altered genes.

Results: Forty male Wistar rats divided into five groups of eight rats were used.

View Article and Find Full Text PDF

Background: The treatment options to delay the progression of diabetic nephropathy (DN), a key contributor to chronic kidney disease (CKD), are urgently needed. Previous studies reported that traditional Chinese medicine Panax notoginseng (PNG) exerted beneficial effects on DN. However, the renoprotective effects of Notoginsenoside R2 (NR2), an active component of PNG, on DN have not been investigated.

View Article and Find Full Text PDF

Insights of cellular and molecular changes in sugarcane response to oxidative signaling.

BMC Plant Biol

January 2025

Bioinformatics Multidisciplinary Environment, IMD, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil.

Significant changes in the proteome highlight essential metabolic adaptations for development and oxidative signaling induced by the treatment of young sugarcane plants with hydrogen peroxide. These adaptations suggest that hydrogen peroxide acts not only as a stressor but primarily as a signaling molecule, triggering specific metabolic pathways that regulate growth and plant resilience. Sugarcane is a crucial crop for sugar and ethanol production, often influenced by environmental signals.

View Article and Find Full Text PDF

Effects of aluminum on metabolism of reactive oxygen species and reactive nitrogen species in root tips of different Eucalyptus species.

BMC Plant Biol

January 2025

Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.

On acidified soil, the growth of Eucalyptus is seriously restricted by aluminum (Al) stress. Therefore, breeding Eucalyptus species with excellent Al tolerance, developing the genetic potential of species, and improving tolerance to Al stress are important for the sustainable development of artificial Eucalyptus forests. By observing the occurrence and distribution of the main reactive oxygen species (ROS) and reactive nitrogen species (RNS) in root tips of Eucalyptus seedlings under Al stress, this study analyzed change in the growth and physiological indexes of Eucalyptus seedlings under Al stress.

View Article and Find Full Text PDF

Doxorubicin or Epirubicin Versus Liposomal Doxorubicin Therapy-Differences in Cardiotoxicity.

Cardiovasc Toxicol

January 2025

Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.

Doxorubicin (DOX) is an important drug used in the treatment of many malignancies. Unfortunately DOX causes various side effects, with cardiotoxicity being the most characteristic. Risk factors for DOX induced cardiotoxicity (DIC) include cumulative dose of DOX, preexisting cardiovascular diseases, dyslipidemia, diabetes, smoking, along with the use of other cardiotoxic agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!