Photophysical and electrochemical studies of cyclometalated cationic heteroleptic iridium(III) complex salts have been carried out. For these complex salts the intense absorption bands appeared around 263 nm and are assigned to spin-allowed π-π* transitions of phenanthroline ligands. Moderately intense and weak absorption bands observed around 341 and 440 nm, respectively. These bands are assigned to spin-allowed metal to ligand charge transfer (1)MLCT and (3)MLCT transitions, respectively. The influence of anions and proton on the photophysical and electrochemical studies were also carried out. The emission wavelength was red shifted and emission color changed from yellow to red by the addition of CF3CO2H. The solution color changed from green to brown and the emission was quenched by the addition anions such as of F(-), CH3COO(-) and H2PO4(-).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-013-1310-yDOI Listing

Publication Analysis

Top Keywords

photophysical electrochemical
12
electrochemical studies
8
complex salts
8
absorption bands
8
assigned spin-allowed
8
color changed
8
tuning photophysical
4
electrochemical properties
4
properties phosphorescent
4
phosphorescent heteroleptic
4

Similar Publications

Light-emitting electrochemical cells (LECs) are an attractive technology in the field of solid state light devices (SSLDs) as their simple architectures allow the preparation of cost-effective lighting devices. Consequently, low-cost and sustainable emitters are highly desirable. Transition metal complexes are attractive in this field as they have been proved to possess compatible optoelectronic properties.

View Article and Find Full Text PDF

A supramolecular system, consisting of a tetrapyrenylporphyrinic core surrounded by arene-ruthenium prisms, has been assembled and characterized by means of electrochemical and photophysical techniques. The photophysical study shows that quantitative energy transfer from the peripheral pyrenyl units towards the central porphyrin core is operative in the tetrapyrenylporphyrinic system. Interestingly, encapsulation of the pyrenyl units into the ruthenium cages affects the photophysics of the central porphyrin component, since its emission quantum yield is reduced in the supramolecular array.

View Article and Find Full Text PDF

Carbazolylpyridine ()-based tetradentate platinum(II) complexes containing fused 6/5/6 metallocycles.

Dalton Trans

January 2025

College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.

A series of carbazolylpyridine ()-based 6/5/6 Pt(II) complexes featuring tetradentate ligands with nitrogen or oxygen atoms as bridging groups was designed and synthesized, and the bridging nitrogen atoms were derived from acridinyl (Ac), azaaceridine (AAc) and carbazole (Cz). Systematic experimental and theoretical studies reveal that the ligand structures have a significant effect on the electrochemical, photophysical and excited state properties of these complexes. Their oxidation processes mainly occur on the carbazole-Pt moieties, whereas the reduction processes typically occur on the electron-deficient pyridine (Py) moieties.

View Article and Find Full Text PDF

Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.

View Article and Find Full Text PDF

Background: The unregulated use of pesticides by farmers, for crop productivity results in widespread contamination of organophosphates in real environmental samples, which is a growing societal concern about their potential health effects. The conventional approaches for the monitoring these organophosphate-based pesticides which include immunoassays, electrochemical methods, immunosensors, various chromatography techniques, along with some spectroscopic methods, are either costly, sophisticated, or involves the use of different metal complexes. Therefore, there is an urgent need for sensitive, quick, and easy-to-use detection techniques for the screening of widely used organophosphate-based pesticides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!