Dynamin assembly strategies and adaptor proteins in mitochondrial fission.

Curr Biol

Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.

Published: October 2013

Mitochondrial fission is mediated by a dynamin-related GTPase that assembles at constricted sites on the organelle. The mechanism of action of this GTPase in fission is related to that of classical dynamin, which severs the necks of clathrin-coated pits at the plasma membrane. The scale of these membrane remodeling events differs by an order of magnitude, however, and structural studies have revealed variations in the assembly properties of classical and mitochondrial dynamins that accommodate these differences. Despite this progress, structural and mechanistic models have not yet incorporated a growing number of adaptor proteins that are required for the membrane recruitment and function of mitochondrial dynamins. Here, we review the structure and assembly properties of the yeast and mammalian mitochondrial dynamins and discuss what is known about the activities of their adaptor proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832257PMC
http://dx.doi.org/10.1016/j.cub.2013.08.040DOI Listing

Publication Analysis

Top Keywords

adaptor proteins
12
mitochondrial dynamins
12
mitochondrial fission
8
assembly properties
8
mitochondrial
5
dynamin assembly
4
assembly strategies
4
strategies adaptor
4
proteins mitochondrial
4
fission mitochondrial
4

Similar Publications

Ischemic stroke leads to permanent damage to the affected brain tissue, with strict time constraints for effective treatment. Predictive biomarkers demonstrate great potential in the clinical diagnosis of ischemic stroke, significantly enhancing the accuracy of early identification, thereby enabling clinicians to intervene promptly and reduce patient disability and mortality rates. Furthermore, the application of predictive biomarkers facilitates the development of personalized treatment plans tailored to the specific conditions of individual patients, optimizing treatment outcomes and improving prognoses.

View Article and Find Full Text PDF

Background: Sclerostin (SOST) is traditionally regarded as an osteocyte-derived secreted glycoprotein that regulates bone mineralization. Recent studies reported that SOST is also released from non-skeletal sources, especially during inflammation. However, the cellular source and regulatory mechanisms governing SOST generation in inflammation remain unclear.

View Article and Find Full Text PDF

NUMB alternative splicing and isoform specific functions in development and disease.

J Biol Chem

January 2025

The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON, Canada, M5G 2M9. Electronic address:

The NUMB gene encodes a conserved adaptor protein with roles in asymmetric cell division and cell fate determination. First described as an inhibitor of Notch signaling, multi-functional NUMB proteins regulate multiple cellular pathways through protein complexes with ubiquitin ligases, polarity proteins and the endocytic machinery. The vertebrate NUMB protein isoforms were identified over two decades ago, yet the majority of functional studies exploring NUMB function in endocytosis, cell migration and adhesion, development and disease have largely neglected the potential for distinct isoform activity in design and interpretation.

View Article and Find Full Text PDF

The oncogenes yes-associated protein () and transcriptional coactivator with PDZ-binding motif () are potent liver oncogenes. Because gene mutations cannot fully explain their nuclear enrichment, we aim to understand which mechanisms cause activation in liver cancer cells. The combination of proteomics and functional screening identified numerous apical cell polarity complex proteins interacting with YAP and TAZ.

View Article and Find Full Text PDF

Background: An estimated 10-15% of all genetic diseases are attributable to variants in noncanonical splice sites, auxiliary splice sites and deep-intronic variants. Most of these unstudied variants are classified as variants of uncertain significance (VUS), which are not clinically actionable. This study investigated two novel splice-altering variants, NM_000390.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!