Activation of heme oxygenase recovers motor function after spinal cord injury in rats.

Neurosci Lett

Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., México, Mexico.

Published: November 2013

Characterization of auto-destructive mechanisms, leading to cell death after spinal cord injury (SCI) is important to prevent further damage to tissue. Heme oxygenase (HO) catalyzes the oxidation of heme to biliverdin and carbon monoxide (CO), as a response to cell damage. Products of HO action have biological effects, as antioxidant biliverdin. We evaluated the changes of HO activity after injury, and the effect of pharmacological treatments with hemin (an inducer) and (Sn)-protoporphyrin (an inhibitor, Sn-PPIX) of HO, upon motor recovery after SCI. Female Wistar rats were submitted to SCI by trauma and sacrificed at several times (2, 4, 8, 12 and 24h) after injury to evaluate HO activity. Additional groups of rats were treated with either hemin or Sn-PPIX, to evaluate motor recovery, spared spinal cord tissue and HO activity. Results showed that HO control activity was increased by effect of SCI, at all times evaluated, as compared to sham group values. Twenty-four hours after injury, HO activity was increased 7.2-fold by hemin treatment, as compared to SCI plus vehicle group values. In addition, animals treated with hemin 2 and 8h after SCI, showed a better motor recovery and higher spared cord tissue, as compared to control group values. Our findings indicate that activation of HO is a beneficial mechanism when attained during the acute phase after SCI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2013.08.067DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
motor recovery
12
group values
12
heme oxygenase
8
cord injury
8
treated hemin
8
cord tissue
8
activity increased
8
sci
7
injury
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!