Increased pro-nerve growth factor and decreased brain-derived neurotrophic factor in non-Alzheimer's disease tauopathies.

Neurobiol Aging

Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Department of Biology, McMaster University, Hamilton, Ontario, Canada. Electronic address:

Published: April 2014

Alterations in the expression and signaling of brain-derived neurotrophic factor (BDNF) and the precursor to nerve growth factor (NGF), proNGF, play a role in the neuronal and cognitive dysfunction of Alzheimer's disease. Aggregated amyloid-β has been shown to down-regulate specific BDNF transcripts in Alzheimer's disease, but the role of tau pathology in neurotrophin dysregulation has not been investigated. We measured levels of BDNF mRNA and protein using real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay and proNGF protein using Western blotting in parietal cortex of subjects with tauopathies, neurodegenerative diseases exhibiting tau pathology without amyloid-β accumulation. We observed a significant increase in the level of proNGF protein in Pick's disease and a significant decrease in BDNF mRNA and protein levels in Pick's disease and corticobasal degeneration, but no neurotrophin alterations in progressive supranuclear palsy. The decrease in total BDNF mRNA levels in these tauopathies was predominantly due to down-regulation of transcript IV. These findings implicate tau pathology in neurotrophin dysregulation, which may represent a mechanism through which tau confers toxicity in Alzheimer's disease and related non-Alzheimer's dementias.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2013.08.029DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
tau pathology
12
bdnf mrna
12
growth factor
8
brain-derived neurotrophic
8
neurotrophic factor
8
pathology neurotrophin
8
neurotrophin dysregulation
8
mrna protein
8
prongf protein
8

Similar Publications

Neuraminidase 1 regulates neuropathogenesis by governing the cellular state of microglia via modulation of Trem2 sialylation.

Cell Rep

January 2025

Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA. Electronic address:

Neuraminidase 1 (NEU1) cleaves terminal sialic acids from sialoglycoproteins in endolysosomes and at the plasma membrane. As such, NEU1 regulates immune cells, primarily those of the monocytic lineage. Here, we examine how Neu1 influences microglia by modulating the sialylation of full-length Trem2 (Trem2-FL), a multifunctional receptor that regulates microglial survival, phagocytosis, and cytokine production.

View Article and Find Full Text PDF

Introduction: The Virginia Memory Project (VMP) is a statewide epidemiological registry for Alzheimer's disease and related disorders (ADRD) and other neurodegenerative conditions. It aims to support dementia research, policy, and care by leveraging the Centers for Disease Control (CDC) Healthy Brain Initiative (HBI) Roadmap.

Methods: To capture comprehensive data, the VMP integrates self-enrollment and automatic enrollment using Virginia's All-Payer Claims Database (APCD).

View Article and Find Full Text PDF

The association of seizure control with neuropathology in dementia.

Brain

January 2025

Comprehensive Epilepsy Program, Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA.

Seizures in people with dementia (PWD) are associated with faster cognitive decline and worse clinical outcomes. However, the relationship between ongoing seizure activity and postmortem neuropathology in PWD remains unexplored. We compared post-mortem findings in PWD with active, remote, and no seizures using multicentre data from 39 Alzheimer's Disease Centres from 2005 to 2021.

View Article and Find Full Text PDF

APOE4 impact on soluble and insoluble tau pathology is mostly influenced by amyloid-beta.

Brain

January 2025

Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 22184 Lund, Sweden.

The APOE4 allele is the strongest genetic risk factor for sporadic Alzheimer's disease (AD). While APOE4 is strongly associated with amyloid-beta (Aβ), its relationship with tau accumulation is less understood. Studies evaluating the role of APOE4 on tau accumulation showed conflicting results, particularly regarding the independence of these associations from Aβ load.

View Article and Find Full Text PDF

Objective: Neuropsychiatric symptoms (NPS) are considered diagnostic and prognostic indicators of dementia and are attributable to neurodegenerative processes. Little is known about the prognostic value of early NPS on executive functioning (EF) decline in Alzheimer's disease and related dementias (ADRD). We examined whether baseline NPS predicted the rate of executive function (EF) decline among older adults with ADRD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!