Climate change is one of the major issues nowadays, and Mediterranean broadleaf species have been suggested to fill possible future gaps created by climate change in Central European forests. To provide a scientific-based foundation for such practical strategies, it is important to obtain a general idea about differences and similarities in the physiology of Central European and Mediterranean species. In the present study, we evaluated the onset of leaf senescence of a broad spectrum of oak species under the Central European climate in a common garden experiment. Degradation of the photosynthetic apparatus of evergreen (Quercus ilex, Q. suber), semi-evergreen (Q.×turneri, Q.×hispanica) and deciduous oaks (Q. robur, Q. cerris, Q. frainetto, Q. pubescens) was monitored as chlorophyll content and analysed chlorophyll fluorescence induction transients. In the deciduous species, a significant decline in chlorophyll content was observed during autumn/winter, with Q. pubescens showing the slowest decline. Analysis of fluorescence induction transients revealed a significant decline in quantum efficiency of the primary photochemistry and reaction centre density and later, a decrease in quantum efficiency of end acceptor reduction. Alterations in fluorescence parameters were compared to the decline in chlorophyll content, which occurred much more slowly than expected from the fluorescence data. The evergreen species showed no decline in chlorophyll content, nor different chlorophyll a fluorescence induction behaviour despite temperature falling below 0 °C. The hybrids showed intermediate behaviour between their parental evergreen and deciduous taxa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/plb.12105 | DOI Listing |
BMC Plant Biol
January 2025
Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan.
Cotton is essential for the global textile industry however, climate change, especially extreme temperatures, threatens sustainable cotton production. This research aims to identify breeding strategies to improve heat tolerance and utilize stress-resistant traits in cotton cultivars. This study investigated heat tolerance for 50 cotton genotypes at the seedling stage by examining various traits at three temperatures (32 °C, 45 °C and 48 °C) in a randomized plot experiment.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki, 30, Novi Sad, 21000, Serbia.
Wheat (Triticum aestivum L.) productivity and quality can be threatened by soil cadmium (Cd) contamination, posing a concern to food security. Salicylic acid (SA) is an endogenously produced signaling molecule that activates the defense system imparting abiotic stress tolerance in plants.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, 130102, Jilin Province, China.
The expansion of irrigated agriculture in semi-arid regions exacerbates the degradation of wetland ecosystems. Precision water recharge can facilitate near-natural restoration of degraded wetlands by alleviating the conflict between wetlands and agricultural water use. However, although the ecological significance of precision water recharge as a nature-based solution for restoring wetland vegetation has been widely acknowledged, the mechanisms driving its role in spikelet development and seed growth in Carex schmidtii Meinsh.
View Article and Find Full Text PDFInt J Phytoremediation
January 2025
Graduate School of Environmental Studies, Tohoku University, Sendai, Japan.
ssp. is well known as a Cd hyperaccumulator. Yet, understanding how this plant survives in a high Cd environment without appearing toxicity signs is far from complete.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Chinese Materia Medica, Shaanxi Provincial Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China.
Drought stress inhibits Bunge () seedling growth and yield. Here, we studied the effects of drought stress on the different parts of seedlings through physiological, transcriptomic, and metabolomics analyses, and identified key genes and metabolites related to drought tolerance. Physiological analysis showed that drought stress increased the accumulation of hydrogen peroxide (HO), enhanced the activity of peroxidase (POD), decreased the activity of catalase (CAT) and the contents of chlorophyll b and total chlorophyll, reduced the degree of photosynthesis, enhanced oxidative damage in seedlings, and inhibited the growth of plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!