Ruthenium red-insensitive, uncoupler-stimulated release of Ca2+ from Ehrlich ascites tumor cell mitochondria is much slower than from rat liver mitochondria under comparable conditions. In the presence of Pi and at moderate or high Ca2+ loads, ruthenium red-insensitive Ca2+ efflux elicited with uncoupler is approximately 20 times more rapid for rat liver than Ehrlich cell mitochondria. This is attributed to resistance of tumor mitochondria to damage by Ca2+ due to a high level of endogenous Mg2+ that also attenuates Ca2+ efflux. Calcium release from rat liver and tumor mitochondria is inhibited by exogenous Mg2+. This applies to ruthenium red-insensitive spontaneous Ca2+ efflux associated with Ca2+ uptake and uncoupling, and (b) ruthenium red-insensitive Ca2+ release stimulated by uncoupling agent. The endogenous Mg2+ level of Ehrlich tumor mitochondria is approximately three times that of rat liver mitochondria. Endogenous Ca2+ is also much greater (six fold) in Ehrlich tumor mitochondria compared to rat liver. Despite the quantitative difference in endogenous Mg2+, the properties of internal Mg2+ are much the same for rat liver and Ehrlich cell mitochondria. Ehrlich ascites tumor mitochondria exhibit slow, metabolically dependent Mg2+ release and rapid limited release of Mg2+ during Ca2+ uptake. Both have been observed with rat liver and other types of mitochondria. The proportions of apparently "bound" and "free" Mg2+ (inferred from release by the ionophore, A23187) do not differ significantly between tumor and liver mitochondria. Thus, the endogenous Mg2+ of tumor mitochondria has no unusual features but is simply elevated substantially. Ruthenium red-insensitive Ca2+ efflux, when expressed as a function of the intramitochondrial Ca2+/Mg2+ ratio, is quite similar for tumor and rat liver. It is proposed, therefore, that endogenous Mg2+ is a major regulatory factor responsible for differences in the sensitivity to damage by Ca2+ and Ca2+ release by Ehrlich ascites tumor mitochondria compared to mitochondria from normal tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0003-9861(85)90081-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!