Purpose: Transcranial magnetic stimulation (TMS) was used to characterize measurable changes of cortical excitability in patients who were undergoing medical and surgical management of temporal lobe epilepsy (TLE) to investigate whether these alterations depended on timing of achieving seizure control throughout the course of illness and method of management.
Methods: Eighty-five patients with TLE divided into (1) drug naive-new onset, (2) early medically refractor, and (3) late medically refractory, (4) early seizure-free on antiepileptic drugs, and (5) late seizure-free on antiepileptic drugs, (6) postoperative refractory, and (7) postoperative seizure-free groups were studied. Motor threshold (MT) and paired-pulse TMS at short (2, 5, 10, and 15 msec) and long (100-300 msec) interstimulus intervals (ISIs) were measured. Results were compared to those of 20 controls.
Key Findings: A significant interhemispheric difference was observed early at onset prior to starting medication, with higher cortical excitability in the hemisphere ipsilateral to the seizure focus, whereas the unaffected hemisphere was normal. After that, cortical excitability was higher in both hemispheres in the refractory groups (medical and postoperative) compared to the seizure-free and drug-naive groups (p < 0.05). This effect was most prominent at the long ISIs.
Significance: Changes in cortical excitability seen in patients with TLE are influenced by the course of the disease. The alterations that occur due to epilepsy are closely related to course of illness and degree/timing of seizure control. Successful management leads to resolution of this cortical hyperexcitability in a similar fashion regardless of method: medication (intact generator, but modulated by drugs) or surgery (generator removed).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/epi.12374 | DOI Listing |
Heliyon
December 2024
Department of Medicine, Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
In early-stage Alzheimer's disease (AD) amyloid-β (Aβ) deposition can induce neuronal hyperactivity, thereby potentially triggering activity-dependent neuronal secretion of phosphorylated tau (p-tau), ensuing tau aggregation and spread. Therefore, cortical excitability is a candidate biomarker for early AD detection. Moreover, lowering neuronal excitability could potentially complement strategies to reduce Aβ and tau buildup.
View Article and Find Full Text PDFBrain Res Bull
January 2025
Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, China. Electronic address:
Sleep deprivation is a common public problem, and researchers speculated its neurophysiological mechanisms related to cortical excitatory and inhibitory activity. Recently, transcranial magnetic stimulation combined with electromyography (TMS-EMG) and electroencephalography (TMS-EEG) have been used to assess cortical excitability in sleep-deprived individuals, but the results were inconsistent. Therefore, we conducted a meta-analysis to summarize relevant TMS-evoked indices of excitability and inhibition for exploring the cortical effects of sleep deprivation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.
View Article and Find Full Text PDFeNeuro
January 2025
Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705
Fragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing, and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Rehabilitation, Daping Hospital, Army Medical University, Chongqing, China
Introduction: Spasticity is a common complication of stroke, which is related to poor motor recovery and limitations in the performance of activities. Both transcranial magnetic stimulation (TMS) and extracorporeal shockwave therapy (ESWT) are effective treatment methods for poststroke spasticity (PSS). However, there is no existing study exploring the safety and effectiveness of TMS combined with ESWT for PSS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!