The nanostructure of micrometer-sized domains (bits) in phase-change materials (PCM) that undergo switching between amorphous and crystalline phases plays a key role in the performance of optical PCM-based memories. Here, we explore the dynamics of such phase transitions by mapping PCM nanostructures in three dimensions with nanoscale resolution by combining precision Ar ion beam cross-sectional polishing and nanomechanical ultrasonic force microscopy (UFM) mapping. Surface and bulk phase changes of laser written submicrometer to micrometer sized amorphous-to-crystalline (SET) and crystalline-to-amorphous (RESET) bits in chalcogenide Ge2Sb2Te5 PCM are observed with 10-20 nm lateral and 4 nm depth resolution. UFM mapping shows that the Young's moduli of crystalline SET bits exceed the moduli of amorphous areas by 11 ± 2%, with crystalline content extending from a few nanometers to 50 nm in depth depending on the energy of the switching pulses. The RESET bits written with 50 ps pulses reveal shallower depth penetration and show 30-50 nm lateral and few nanometer vertical wavelike topography that is anticorrelated with the elastic modulus distribution. Reverse switching of amorphous RESET bits results in the full recovery of subsurface nanomechanical properties accompanied with only partial topography recovery, resulting in surface corrugations attributed to quenching. This precision sectioning and nanomechanical mapping approach could be applicable to a wide range of amorphous, nanocrystalline, and glass-forming materials for 3D nanomechanical mapping of amorphous-crystalline transitions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am403682m | DOI Listing |
Biophys Rev
December 2024
Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, 1348 Louvain-la-Neuve, Belgium.
Atomic force microscopy (AFM) has emerged as a powerful tool for studying biological interactions at the single-molecule level, offering unparalleled insights into receptor-ligand dynamics on living cells. This review discusses key developments in the application of AFM, highlighting its ability to capture nanomechanical properties of cellular surfaces and probe dynamic interactions, such as virus-host binding. AFM's versatility in measuring mechanical forces and mapping molecular interactions in near-physiological conditions is explored.
View Article and Find Full Text PDFHistochem Cell Biol
December 2024
School of Mechanical, Medical & Process Engineering, Queensland University of Technology, 60 Musk Ave/Cnr. Blamey St, Kelvin Grove, Brisbane, QLD, 4059, Australia.
Understanding the osteochondral junction, where non-mineralised cartilage and mineralised bone converge, is crucial for joint health. Current sample preparation techniques are insufficient for detailed spatial hyperspectral imaging analysis. Using the enhanced Kawamoto method, we used the super cryo embedding medium's temperature-dependent properties to transfer high-quality tissue samples onto slides for spatial imaging analysis.
View Article and Find Full Text PDFACS Omega
November 2024
Laboratoire de Physique des Solides (LPS), UMR CNRS 8502, University Paris-Saclay, University Paris-Sud, Orsay 91405, France.
Acta Biomater
December 2024
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada. Electronic address:
Sci Rep
October 2024
Instituto de Física, Universidade de São Paulo, São Paulo, 05508090, SP, Brazil.
Schistosoma mansoni, an intravascular parasitic worm and the causative agent of schistosomiasis, relies on its tegument (outer layer) for survival and host interaction. This study explored the morphology and mechanical properties of S. mansoni tegument using Atomic Force Microscopy (AFM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!