We present the first report on carbon fiber-interwoven amorphous nano-SiOx/graphene prepared by a simple and facile room temperature synthesis of amorphous SiOx nanoparticles using silica, followed by their homogeneous dispersion with graphene nanosheets and carbon fibers in room temperature aqueous solution. Transmission and scanning electron microscopic imaging reveal that amorphous SiOx primary nanoparticles are 20-30 nm in diameter and carbon fibers are interwoven throughout the secondary particles of 200-300 nm, connecting SiOx nanoparticles and graphene nanosheets. Carbon fiber-interwoven nano-SiO0.37/graphene electrode exhibits impressive cycling performance and rate-capability up to 5C when evaluated as a rechargeable lithium battery anode, delivering discharge capacities of 1579-1263 mAhg(-1) at the C/5 rate with capacity retention of 80% and Coulombic efficiencies of 99% over 50 cycles, and nearly sustained microstructure. The cycling performance is attributed to synergetic effects of amorphous nano-SiOx, strain-tolerant robust microstructure with maintained particle connectivity and enhanced electrical conductivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am4034763 | DOI Listing |
ACS Appl Mater Interfaces
November 2013
Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea.
We present the first report on carbon fiber-interwoven amorphous nano-SiOx/graphene prepared by a simple and facile room temperature synthesis of amorphous SiOx nanoparticles using silica, followed by their homogeneous dispersion with graphene nanosheets and carbon fibers in room temperature aqueous solution. Transmission and scanning electron microscopic imaging reveal that amorphous SiOx primary nanoparticles are 20-30 nm in diameter and carbon fibers are interwoven throughout the secondary particles of 200-300 nm, connecting SiOx nanoparticles and graphene nanosheets. Carbon fiber-interwoven nano-SiO0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!