The influence of sampling design on species tree inference: a new relationship for the New World chickadees (Aves: Poecile).

Evolution

Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, Ithaca, New York, 14850; Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14850; Department of Biology and Burke Museum, University of Washington, Seattle, Washington.

Published: February 2014

In this study, we explore the long-standing issue of how many loci are needed to infer accurate phylogenetic relationships, and whether loci with particular attributes (e.g., parsimony informativeness, variability, gene tree resolution) outperform others. To do so, we use an empirical data set consisting of the seven species of chickadees (Aves: Paridae), an analytically tractable, recently diverged group, and well-studied ecologically but lacking a nuclear phylogeny. We estimate relationships using 40 nuclear loci and mitochondrial DNA using four coalescent-based species tree inference methods (BEST, *BEAST, STEM, STELLS). Collectively, our analyses contrast with previous studies and support a sister relationship between the Black-capped and Carolina Chickadee, two superficially similar species that hybridize along a long zone of contact. Gene flow is a potential source of conflict between nuclear and mitochondrial gene trees, yet we find a significant, albeit low, signal of gene flow. Our results suggest that relatively few loci with high information content may be sufficient for estimating an accurate species tree, but that substantially more loci are necessary for accurate parameter estimation. We provide an empirical reference point for researchers designing sampling protocols with the purpose of inferring phylogenies and population parameters of closely related taxa.

Download full-text PDF

Source
http://dx.doi.org/10.1111/evo.12280DOI Listing

Publication Analysis

Top Keywords

species tree
12
tree inference
8
chickadees aves
8
gene flow
8
species
5
loci
5
influence sampling
4
sampling design
4
design species
4
tree
4

Similar Publications

Leaf Photosynthetic and Respiratory Thermal Acclimation in Terrestrial Plants in Response to Warming: A Global Synthesis.

Glob Chang Biol

January 2025

Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China.

Leaf photosynthesis and respiration are two of the largest carbon fluxes between the atmosphere and biosphere. Although experiments examining the warming effects on photosynthetic and respiratory thermal acclimation have been widely conducted, the sensitivity of various ecosystem and vegetation types to warming remains uncertain. Here we conducted a meta-analysis on experimental observations of thermal acclimation worldwide.

View Article and Find Full Text PDF

Population variation in fatty acid composition and response to climatic factors in Malania oleifera Chun et S.K. Lee.

BMC Plant Biol

January 2025

Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden, Beijing, 100093, China.

Malania oleifera Chun et S.K. Lee is a woody oil tree species and is rich in nervonic acid, which is associated with brain development.

View Article and Find Full Text PDF

Polyphenols as a strategy for improving male reproductive system.

Mol Biol Rep

January 2025

Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.

Reproduction in males is one of the complicated processes that is mediated by many environmental factors, as well as by diet (e.g. supplements, nutritional value).

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) has been reported to synergize with hepatitis B virus (HBV) to induce development of hepatocellular carcinoma (HCC). Precise daily exposure to AFB1 and its contribution to liver injury have not been quantified and have even been disregarded due to lack of convenient detection, and the strong species specificity of HBV infection has restricted research on their synergistic harm. Hence, our objective was to investigate the molecular mechanisms by which AFB1 exacerbates HBV-related injury.

View Article and Find Full Text PDF

A common problem when analyzing ancient DNA (aDNA) data is to identify the species which corresponds to the recovered aDNA sequence(s). The standard approach is to deploy sequence similarity based tools, such as BLAST. However, as aDNA reads may frequently stem from unsampled taxa due to extinction, it is likely that there is no exact match in any database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!