Analyzing the muscle activities that drive the expressive facial gestures can be a useful tool in assessing one's emotional state of mind. Since the skin motion is much easier to measure in comparison to the actual electrical excitation signal of facial muscles, a biomechanical model of the human face driven by these muscles can be a useful tool in relating the geometric information to the muscle activity. However, long computational time often hinders its practicality. The objective of this study was to replace the precise but computationally demanding biomechanical model by a much faster multivariate meta-model (surrogate model), such that a significant speedup (real-time interactive speed) can be achieved and data from the biomechanical model can be practically exploited. Using the proposed surrogate, muscle activation patterns of six key facial expressions were estimated in the iterative fit from the structured-light scanned geometric information.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2013.6611212DOI Listing

Publication Analysis

Top Keywords

biomechanical model
12
muscle activation
8
activation patterns
8
surrogate model
8
model
5
estimating muscle
4
patterns surrogate
4
facial
4
model facial
4
facial biomechanics
4

Similar Publications

Musculoskeletal model predicted paraspinal loading may quick estimate the effect of exercise on spine BMD.

Front Bioeng Biotechnol

December 2024

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.

Purpose: Spine is the most commonly found fracture site due to osteoporosis. Combined exercise including high-impact and resistance exercise shows the potential to improve bone mineral density (BMD) in the spine. However, the mechanical loading introduced by exercise, which is the mechanism of BMD changes, has not been investigated.

View Article and Find Full Text PDF

Biomechanical gait impairments, such as reduced paretic propulsion, are common post-stroke. Studies have used biofeedback to increase paretic propulsion and reduce propulsion asymmetry, but it is unclear if these changes impact overall gait asymmetry. There is an implicit assumption that reducing propulsion asymmetry will improve overall gait symmetry, as paretic propulsion has been related to numerous biomechanical impairments.

View Article and Find Full Text PDF

The shoulder joint complex is prone to musculoskeletal issues, such as rotator cuff-related pain, which affect two-thirds of adults and often result in suboptimal treatment outcomes. Current musculoskeletal models used to understand shoulder biomechanics are limited by challenges in personalization, inaccuracies in predicting joint and muscle loads, and an inability to simulate anatomically accurate motions. To address these deficiencies, we developed a novel, personalized modeling framework capable of calibrating subject-specific joint centers and functional axes for the shoulder complex.

View Article and Find Full Text PDF

Background: Surgical reconstruction is the standard treatment for injuries to the posterolateral corner (PLC) of the knee and can be performed using either a fibular-based or combined tibiofibular-based technique. Although some comparative studies have been performed, there is no consensus regarding the reconstructive approach that confers optimal biomechanical properties of the PLC.

Purpose: To perform a systematic review and meta-analysis to evaluate the biomechanical properties of the knee after PLC reconstruction with fibular-based and tibiofibular-based techniques.

View Article and Find Full Text PDF

Children with autism spectrum disorder (ASD) display a variety of core and co-occurring difficulties in social, communication, everyday functioning, cognitive, motor, and language domains. Receiving a combination of services to accommodate needs of autistic individuals is essential for improving their future outcomes. During the COVID-19 pandemic, reduced service access negatively impacted autistic children's outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!