There is a growing need for an easy to use screening tool for the assessment of brain's electrical function in patients with altered mental status (AMS). The purpose of this study is to give a brief overview of the state-of-the-art in electrode technology, and to present a novel sub-hairline electrode set developed in our research group. Screen-printing technology was utilized to construct the electrode set consisting of ten electroencephalography (EEG) electrodes, two electrooculography (EOG) electrodes, two ground electrodes and two reference electrodes. Electrical characteristics of hydrogel-coated silver ink electrodes were found adequate for clinical EEG recordings as assessed by electrical impedance spectroscopy (EIS). The skin-electrode impedances remain stable and low enough at least two days enabling high-quality long-term recordings. Due to the proper material selection, thin ink layers and detachable zero insertion force (ZIF) - connector, electrode was observed to be CT- and MRI-compatible allowing imaging without removing the electrodes. Pilot EEG recordings gave very promising results and an on-going clinical trial with larger number of patients will show the true feasibility of this approach.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2013.6611099DOI Listing

Publication Analysis

Top Keywords

electrode set
12
eeg recordings
12
patients altered
8
altered mental
8
mental status
8
electrodes
6
electrode
5
novel screen
4
screen printed
4
printed electrode
4

Similar Publications

Fatigue driving is one of the potential factors threatening road safety, and monitoring drivers' mental state through electroencephalography (EEG) can effectively prevent such risks. In this paper, a new model, DE-GFRJMCMC, is proposed for selecting critical channels and optimal feature subsets from EEG data to improve the accuracy of fatigue driving recognition. The model is validated on the SEED-VIG dataset.

View Article and Find Full Text PDF

When listening to speech under adverse conditions, listeners compensate using neurocognitive resources. A clinically relevant form of adverse listening is listening through a cochlear implant (CI), which provides a spectrally degraded signal. CI listening is often simulated through noise-vocoding.

View Article and Find Full Text PDF

Computational exploration of the electrochemical oxidation mechanism of thiocyanate catalyzed by cobalt-phthalocyanines.

Phys Chem Chem Phys

January 2025

Departamento de Química, Facultad de Ciencias, Universidad de Chile, P. O. Box 653, Las Palmeras 3425, Ñuñoa, Santiago, Chile.

In this study, we focused on the mechanism of the electrocatalytic oxidation of thiocyanate, which in traditional electrodes typically requires high overpotentials. As models for reducing these overpotentials and catalyzing the reaction, we used a set of modified cobalt phthalocyanines (CoPc), known as electrocatalysts. Using DFT calculations, we explored how modifications to CoPc by adding electron-donating and withdrawing groups and the coordination of 4-amino thiophenol impact the oxidation process.

View Article and Find Full Text PDF

Despite advancements in preclinical and clinical spinal cord stimulation (SCS) research, the mechanisms of SCS action remain unclear. This may result from challenges in translatability of findings between species. Our systematic review (PROSPERO: CRD42023457443) aimed to comprehensively characterize the important translational components of preclinical SCS models, including stimulating elements and stimulation specifications.

View Article and Find Full Text PDF

Algae extract-based nanoemulsions for photoprotection against UVB radiation: an electrical impedance spectroscopy study.

Sci Rep

January 2025

Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá D.C., Colombia.

Skin cancer is one of the most common types of cancer worldwide, with exposure to UVB radiation being a significant risk factor for its development. To prevent skin cancer, continuous research efforts have focused on finding suitable photoprotective ingredients from natural sources that are also environmentally friendly. This study aimed to develop oil-in-water photoprotective nanoemulsions containing marine macroalgae extract.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!