Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electrocardiography is used to provide features for mental state monitoring systems. There is a need for quick mental state assessment in some applications such as attentive user interfaces. We analyzed how heart rate and heart rate variability features are influenced by working memory load (WKL) and time-on-task (TOT) on very short time segments (5s) with both statistical significance and classification performance results. It is shown that classification of such mental states can be performed on very short time segments and that heart rate is more predictive of TOT level than heart rate variability. However, both features are efficient for WKL level classification. What's more, interesting interaction effects are uncovered: TOT influences WKL level classification either favorably when based on HR, or adversely when based on HRV. Implications for mental state monitoring are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2013.6611071 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!