An understanding of the capacity or ability of various muscle groups to generate endpoint forces that enable grasping tasks could provide a stronger biomechanical basis for the design of reconstructive surgery or rehabilitation for the treatment of the paralyzed or paretic hand. We quantified two-dimensional endpoint force distributions for every combination of the muscles of the index finger, in cadaveric specimens, to understand the capability of muscle groups to produce endpoint forces that accomplish three common types of grasps-tripod, tip and lateral pinch-characterized by a representative level of Coulomb friction. We found that muscle groups of 4 or fewer muscles were capable of generating endpoint forces that enabled performance of each of the grasping tasks examined. We also found that flexor muscles were crucial to accomplish tripod pinch; intrinsic muscles, tip pinch; and the dorsal interosseus muscle, lateral pinch. The results of this study provide a basis for decision making in the design of reconstructive surgeries and rehabilitation approaches that attempt to restore the ability to perform grasping tasks with small groups of muscles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2013.6611064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!