Aging is a process that is inevitable, and makes our body vulnerable to age-related diseases. Age is the most consistent factor affecting the sleep structure. Therefore, new automatic sleep staging methods, to be used in both of young and elderly patients, are needed. This study proposes an automatic sleep stage detector, which can separate wakefulness, rapid-eye-movement (REM) sleep and non-REM (NREM) sleep using only EEG and EOG. Most sleep events, which define the sleep stages, are reduced with age. This is addressed by focusing on the amplitude of the clinical EEG bands, and not the affected sleep events. The age-related influences are then reduced by robust subject-specific scaling. The classification of the three sleep stages are achieved by a multi-class support vector machine using the one-versus-rest scheme. It was possible to obtain a high classification accuracy of 0.91. Validation of the sleep stage detector in other sleep disorders, such as apnea and narcolepsy, should be considered in future work.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2013.6610864DOI Listing

Publication Analysis

Top Keywords

automatic sleep
12
sleep
11
sleep staging
8
elderly patients
8
multi-class support
8
support vector
8
vector machine
8
sleep stage
8
stage detector
8
sleep events
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!